Skip to main content Skip to navigation
PE Rat Anti-Mouse Ly-6A/E
製品詳細
Down Arrow Up Arrow


BD Pharmingen™
SCA-1; Sca1; Stem cell antigen 1; TAP; T-cell-activating protein; Ly6
Mouse (QC Testing)
Rat WI, also known as Wistar (outbred) IgG2a, κ
BALB/c mouse-derived "pre-T" cell hybridoma
Flow cytometry (Routinely Tested)
0.2 mg/ml
AB_394792
Aqueous buffered solution containing ≤0.09% sodium azide.
RUO


Preparation and Storage

The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated with R-PE under optimum conditions, and unconjugated antibody and free PE were removed. Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze.

Product Notices

  1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
  2. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
  3. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
553336 Rev. 15
抗体の詳細
Down Arrow Up Arrow
E13-161.7

The E13-161.7 monoclonal antibody recognizes Ly-6A.2 and Ly-6E.1, which are allelic members of the Ly-6 multigene family. Ly-6A/E is also known as, stem cell antigen 1 (Sca-1/Sca1), or T-cell-activating protein  (TAP). Ly-6A/E is a phosphatidylinositol-anchored protein of ~18 kDa that is expressed on multipotent hematopoietic stem cells (HSC) in mice with both Ly-6 haplotypes. Sca-1+ HSC are found in the adult bone marrow and fetal liver, but not in the early embryo yolk sac or intraembryonic hematopoietic sites, and can be mobilized to the peripheral blood and spleen in the adult. In mice expressing the Ly-6.2 haplotype (e.g., AKR, C57BL, C57BR, C57L, C58, DBA/2, PL, SJL, SWR, 129), Ly-6A/E is also expressed on distinct subpopulations of bone marrow and peripheral B lymphocytes, myeloid cells, and thymic and peripheral T lymphocytes, on the earliest intrathymic T-cell precursor population, and in several non-hematopoietic tissues. Strains with the Ly-6.1 haplotype (e.g., A, BALB/c, CBA, C3H/He, DBA/1, NZB) have few Ly-6A/E+ resting peripheral lymphocytes, whereas activation of T cells from mice of both Ly-6 haplotypes leads to strong expression of the Sca-1 antigen. Studies with the D7 antibody have demonstrated that Ly-6A/E may be involved in the regulation of B and T lymphocyte responses, and it appears to be required for T-cell receptor-mediated T-cell activation. Purified E13-161.7 mAb can block binding of FITC-conjugated D7 antibody (anti-Ly-6A/E) to mouse splenocytes, but purified mAb D7 is unable to block binding of FITC-conjugated E13-161.7 antibody. Anti-Ly-6A/E (Sca-1) mAb may be used in combination with a Mouse Lineage Antibody Panel (e.g., Cat. No. 559971) to identify HSC.

553336 Rev. 15
フォーマットの詳細
Down Arrow Up Arrow
PE
R-Phycoerythrin (PE), is part of the BD family of Phycobiliprotein dyes. This fluorochrome is a multimeric fluorescent phycobiliprotein with excitation maximum (Ex Max) of 496 nm and 566 nm and an emission maximum (Em Max) at 576 nm. PE is designed to be excited by the Blue (488 nm), Green (532 nm) and Yellow-Green (561 nm) lasers and detected using an optical filter centered near 575 nm (e.g., a 575/26-nm bandpass filter). As PE is excited by multiple lasers, this can result in cross-laser excitation and fluorescence spillover on instruments with various combinations of Blue, Green, and Yellow-Green lasers. Please ensure that your instrument’s configurations (lasers and optical filters) are appropriate for this dye.
altImg
PE
Yellow-Green 488 nm, 532 nm, 561 nm
496 nm, 566 nm
576 nm
553336 Rev.15
引用&参考文献
Down Arrow Up Arrow
View product citations for antibody "553336" on CiteAb

Development References (23)

  1. Aihara Y, Buhring HJ, Aihara M, Klein J. An attempt to produce "pre-T" cell hybridomas and to identify their antigens. Eur J Immunol. 1986; 16(11):1391-1399. (Immunogen). View Reference
  2. Auerbach R, Huang H, Lu L. Hematopoietic stem cells in the mouse embryonic yolk sac. Stem Cells. 1996; 14(3):269-280. (Biology). View Reference
  3. Codias EK, Malek TR. Regulation of B lymphocyte responses to IL-4 and IFN-gamma by activation through Ly-6A/E molecules. J Immunol. 1990; 144(6):2197-2204. (Biology). View Reference
  4. Codias EK, Rutter JE, Fleming TJ, Malek TR. Down-regulation of IL-2 production by activation of T cells through Ly-6A/E. J Immunol. 1990; 145(5):1407-1414. (Biology). View Reference
  5. Flood PM, Dougherty JP, Ron Y. Inhibition of Ly-6A antigen expression prevents T cell activation. J Exp Med. 1990; 172(1):115-120. (Biology). View Reference
  6. Ivanov V, Fleming TJ, Malek TR. Regulation of nuclear factor-kappa B and activator protein-1 activities after stimulation of T cells via glycosylphosphatidylinositol-anchored Ly-6A/E. J Immunol. 1994; 153(6):2394-2406. (Biology). View Reference
  7. Jurecic R, Van NT, Belmont JW. Enrichment and functional characterization of Sca-1+WGA+, Lin-WGA+, Lin-Sca-1+, and Lin-Sca-1+WGA+ bone marrow cells from mice with an Ly-6a haplotype. Blood. 1993; 82(9):2673-2683. (Biology). View Reference
  8. Kawamoto H, Ohmura K, Katsura Y. Direct evidence for the commitment of hematopoietic stem cells to T, B and myeloid lineages in murine fetal liver. Int Immunol. 1997; 9(7):1011-1019. (Biology). View Reference
  9. Malek TR, Ortega G, Chan C, Kroczek RA, Shevach EM. Role of Ly-6 in lymphocyte activation. II. Induction of T cell activation by monoclonal anti-Ly-6 antibodies. J Exp Med. 1986; 164(3):709-722. (Biology). View Reference
  10. Marcos MA, Morales-Alcelay S, Godin IE, Dieterlen-Lievre F, Copin SG, Gaspar ML. Antigenic phenotype and gene expression pattern of lymphohemopoietic progenitors during early mouse ontogeny. J Immunol. 1997; 158(6):2627-2637. (Biology). View Reference
  11. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL. The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci U S A. 1995; 92(22):10302-10306. (Biology). View Reference
  12. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL. Identification of a lineage of multipotent hematopoietic progenitors. Development. 1997; 124(10):1929-1939. (Biology). View Reference
  13. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994; 1(8):661-673. (Biology). View Reference
  14. Morrison SJ, Wright DE, Weissman IL. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci U S A. 1997; 94(5):1908-1913. (Biology). View Reference
  15. Osawa M, Nakamura K, Nishi N, et al. In vivo self-renewal of c-Kit+ Sca-1+ Lin(low/-) hemopoietic stem cells. J Immunol. 1996; 156(9):3207-3214. (Biology). View Reference
  16. Rock KL, Reiser H, Bamezai A, McGrew J, Benacerraf B. The LY-6 locus: a multigene family encoding phosphatidylinositol-anchored membrane proteins concerned with T-cell activation. Immunol Rev. 1989; 111:195-224. (Biology). View Reference
  17. Spangrude GJ, Aihara Y, Weissman IL, Klein J. The stem cell antigens Sca-1 and Sca-2 subdivide thymic and peripheral T lymphocytes into unique subsets. J Immunol. 1988; 141(11):3697-3707. (Biology). View Reference
  18. Spangrude GJ, Brooks DM. Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood. 1993; 82(11):3327-3332. (Biology). View Reference
  19. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988; 241(4861):58-62. (Biology). View Reference
  20. Spangrude GJ, Klein J, Heimfeld S, Aihara Y, Weissman IL. Two monoclonal antibodies identify thymic-repopulating cells in mouse bone marrow. J Immunol. 1989; 142(2):425-430. (Biology). View Reference
  21. Wu L, Antica M, Johnson GR, Scollay R, Shortman K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J Exp Med. 1991; 174(6):1617-1627. (Biology). View Reference
  22. Yamamoto Y, Yasumizu R, Amou Y, et al. Characterization of peripheral blood stem cells in mice. Blood. 1996; 88(2):445-454. (Biology). View Reference
  23. van de Rijn M, Heimfeld S, Spangrude GJ, Weissman IL. Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family. Proc Natl Acad Sci U S A. 1989; 86(12):4634-4638. (Biology). View Reference
すべて表示する (23) 表示項目を減らす
553336 Rev. 15

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.