Skip to main content Skip to navigation
R718 Mouse Anti-Human CD152
R718 Mouse Anti-Human CD152
Multicolor flow cytometric analysis of CD152 expression on activated Human peripheral blood lymphocytes. Phytohemagglutinin (PHA)-activated (3 days) Human peripheral blood mononuclear cells were preincubated with Human BD Fc Block™ (Cat. No. 564219/564220). These cells were then stained with PE Mouse Anti-Human CD3 antibody (Cat. No. 555333/561808) and with either BD Horizon™ R718 Mouse IgG2a, κ Isotype Control (Cat. No. 566949; Left Plot) or BD Horizon™ R718 Mouse Anti-Human CD152 antibody (Cat. No. 567226/567070; Right Plot). BD Via-Probe™ Cell Viability 7-AAD Solution (Cat. No. 555815/555816) was added to cells right before analysis. Bivariate pseudocolor density plots showing the correlated expression of CD152 (or Ig Isotype control staining) versus CD3 were derived from gated events with the forward and side light-scatter characteristics of viable (7-AAD negative) lymphocytes. Flow cytometry and data analysis were performed using a BD LSRFortessa™ X-20 Cell Analyzer System and FlowJo™ software.
Multicolor flow cytometric analysis of CD152 expression on activated Human peripheral blood lymphocytes. Phytohemagglutinin (PHA)-activated (3 days) Human peripheral blood mononuclear cells were preincubated with Human BD Fc Block™ (Cat. No. 564219/564220). These cells were then stained with PE Mouse Anti-Human CD3 antibody (Cat. No. 555333/561808) and with either BD Horizon™ R718 Mouse IgG2a, κ Isotype Control (Cat. No. 566949; Left Plot) or BD Horizon™ R718 Mouse Anti-Human CD152 antibody (Cat. No. 567226/567070; Right Plot). BD Via-Probe™ Cell Viability 7-AAD Solution (Cat. No. 555815/555816) was added to cells right before analysis. Bivariate pseudocolor density plots showing the correlated expression of CD152 (or Ig Isotype control staining) versus CD3 were derived from gated events with the forward and side light-scatter characteristics of viable (7-AAD negative) lymphocytes. Flow cytometry and data analysis were performed using a BD LSRFortessa™ X-20 Cell Analyzer System and FlowJo™ software.
製品詳細
Down Arrow Up Arrow


BD Horizon™
CTLA-4; AILIM; Cytotoxic T-lymphocyte protein 4
Human (QC Testing), Rhesus,Cynomolgus,Baboon (Tested in Development)
Mouse BALB/c IgG2a, κ
Human CTLA4 Recombinant Protein
Flow cytometry (Routinely Tested), Intracellular staining (flow cytometry) (Tested During Development)
5 µl
IX 34
1493
Aqueous buffered solution containing ≤0.09% sodium azide.
RUO


Preparation and Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated to the dye under optimum conditions and unreacted dye was removed.

推奨アッセイ手順

BD® CompBeads can be used as surrogates to assess fluorescence spillover (compensation). When fluorochrome conjugated antibodies are bound to BD® CompBeads, they have spectral properties very similar to cells. However, for some fluorochromes there can be small differences in spectral emissions compared to cells, resulting in spillover values that differ when compared to biological controls. It is strongly recommended that when using a reagent for the first time, users compare the spillover on cells and BD® CompBeads to ensure that BD® CompBeads are appropriate for your specific cellular application.

Product Notices

  1. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
  2. This reagent has been pre-diluted for use at the recommended Volume per Test. We typically use 1 × 10^6 cells in a 100-µl experimental sample (a test).
  3. An isotype control should be used at the same concentration as the antibody of interest.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  5. This product is provided under an Agreement between BIOTIUM and BD Biosciences. This product, and only in the amount purchased by buyer, may be used solely for buyer’s own internal research, in a manner consistent with the accompanying product literature. No other right to use, sell or otherwise transfer (a) this product, or (b) its components is hereby granted expressly, by implication or by estoppel. This product is for research use only. Diagnostic uses require a separate license from Biotium, Inc. For information on purchasing a license to this product including for purposes other than research, contact Biotium, Inc., 3159 Corporate Place, Hayward, CA 94545, Tel: (510) 265-1027. Fax: (510) 265-1352. Email: btinfo@biotium.com.
  6. Please refer to http://regdocs.bd.com to access safety data sheets (SDS).
  7. Alexa Fluor™ is a trademark of Life Technologies Corporation.
  8. Species cross-reactivity detected in product development may not have been confirmed on every format and/or application.
  9. Human donor specific background has been observed in relation to the presence of anti-polyethylene glycol (PEG) antibodies, developed as a result of certain vaccines containing PEG, including some COVID-19 vaccines. We recommend use of BD Horizon Brilliant™ Stain Buffer in your experiments to help mitigate potential background. For more information visit https://www.bdbiosciences.com/en-us/support/product-notices.
  10. For U.S. patents that may apply, see bd.com/patents.
567226 Rev. 3
抗体の詳細
Down Arrow Up Arrow
BNI3

The BNI3 monoclonal antibody specifically binds to the human cytolytic T lymphocyte-associated antigen (CTLA-4), also known as CD152. CTLA-4 is transiently expressed on activated CD28+ T cells and binds to CD80 and CD86 present on antigen presenting cells (APC) with high avidity. This interaction appears to deliver a negative regulatory signal to the T cell. Recent reports indicate that CTLA-4 is also expressed on B cells when cultured with activated T cells, suggesting a role for CTLA-4 in the regulation of B-cell response. Immobilized BNI3 antibody enhances T-cell proliferation induced by antibody-mediated crosslinking of CD3 and CD28. Recent studies have shown that CD152 can be expressed by regulatory T (Treg) cells. After cellular fixation and permeabilization, the BNI3 antibody can stain intracellular CD152 expressed in T cells including Treg cells. Clone BNI3 was studied in the VI Leukocyte Typing Workshop.

567226 Rev. 3
フォーマットの詳細
Down Arrow Up Arrow
R718
The BD Horizon™ Red 718 (R718) Dye is part of the BD red family of dyes. It is a small organic fluorochrome with an excitation maximum (Ex Max) at 695-nm and an emission maximum (Em Max) at 718-nm. Driven by BD innovation, R718 is designed to be excited by the red laser (627–640-nm) and detected using an optical filter centered near 720-nm (e.g., a 720/40-nm bandpass filter). R718 is a brighter alternative to Alexa Fluor™ 700. R718 is also a bright small molecule alternative to APC-R700 with lower spread into the APC detector. Please ensure that your instrument’s configurations (lasers and optical filters) are appropriate for this dye.
altImg
R718
Red 627-640 nm
695 nm
718 nm
567226 Rev.3
引用&参考文献
Down Arrow Up Arrow

Development References (10)

  1. Cabezon R, Sintes J, Llinas L, Benitez-Ribas D. Analysis of HLDA9 mAbs on plasmacytoid dendritic cell. Immunol Lett. 2011; 134(2):167-173. (Clone-specific: Flow cytometry). View Reference
  2. Castan J, Klauenberg U, Kalmar P, Fleischer B, Broker BM. Expression of CTLA-4 (CD152) on human medullary CD4+ thymocytes. Med Microbiol Immunol (Berl). 1998; 187(1):49-52. (Immunogen: Fluorescence microscopy, Immunocytochemistry, Immunofluorescence, Immunohistochemistry). View Reference
  3. Castan J, Tenner-Racz K, Racz P, Fleischer B, Broker BM. Accumulation of CTLA-4 expressing T lymphocytes in the germinal centres of human lymphoid tissues. Immunology. 1997; 90(2):265-271. (Immunogen: ELISA, Fluorescence microscopy, Immunofluorescence, Immunohistochemistry). View Reference
  4. Healy ZR, Murdoch DM. OMIP-036: Co-inhibitory receptor (immune checkpoint) expression analysis in human T cell subsets.. Cytometry A. 2016; 89(10):889-892. (Clone-specific: Intracellular Staining/Flow Cytometry). View Reference
  5. Kuiper HM, Brouwer M, Linsley PS, van Lier RA. Activated T cells can induce high levels of CTLA-4 expression on B cells. J Immunol. 1995; 155(4):1776-1783. (Biology). View Reference
  6. Lindsten T, Lee KP, Harris ES, et al. Characterization of CTLA-4 structure and expression on human T cells. J Immunol. 1993; 151(7):3489-3499. (Biology). View Reference
  7. Morton PA, Fu XT, Stewart JA, et al. Differential effects of CTLA-4 substitutions on the binding of human CD80 (B7-1) and CD86 (B7-2). J Immunol. 1996; 156(3):1047-1054. (Biology). View Reference
  8. Rabe H, Lundell AC, Andersson K, Adlerberth I, Wold AE, Rudin A. Higher proportions of circulating FOXP3+ and CTLA-4+ regulatory T cells are associated with lower fractions of memory CD4+ T cells in infants.. J Leukoc Biol. 2011; 90(6):1133-40. (Clone-specific: Intracellular Staining/Flow Cytometry). View Reference
  9. Santegoets SJ, Dijkgraaf EM, Battaglia A, et al. Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry.. Cancer Immunol Immunother. 2015; 64(10):1271-86. (Clone-specific: Intracellular Staining/Flow Cytometry). View Reference
  10. Wang H, Shih CC, Waters JB, et al. CD152 (CTLA4) Workshop: Expression and function of CD152 on human T cells: A study using a mouse anti-human CD152 monoclonal antibody BNI3.1. In: Kishimoto T. Tadamitsu Kishimoto .. et al., ed. Leucocyte typing VI : white cell differentiation antigens : proceedings of the sixth international workshop and conference held in Kobe, Japan, 10-14 November 1996. New York: Garland Pub.; 1997:97-98.
すべて表示する (10) 表示項目を減らす
567226 Rev. 3

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.