Skip to main content Skip to navigation
Anti-Terminal-Deoxynucleotidyl Transferase (TdT) PE
Down Arrow Up Arrow

TdT; DNTT; Terminal transferase; Terminal addition enzyme
Mouse BALB/c IgG1, κ
Purified Human TdT
Flow cytometry
6.0 μg/mL
20 μL
Phosphate buffered saline with gelatin and 0.1% sodium azide.


Vials should be stored at 2° to 8°C. Conjugated forms should not be frozen and should be protected from prolonged exposure to light. Each reagent is stable for the period shown on the bottle label when stored as directed.

347209 Rev. 1
Down Arrow Up Arrow

Anti-TdT, clone E17-1519, is generated from the fusion of FO myeloma cells with spleen cells from BALB/c mice immunized with purified TdT enzyme.

Anti–terminal-deoxynucleotidyl transferase (TdT) recognizes a 60-kilodalton (kd) polymerase, a nuclear enzyme that catalyzes the template-independent addition of nucleotides to single-stranded DNA primers. It has been reported that TdT is involved in the regulation or translocation or both of DNA and gene rearrangement during normal T- and B-cell development.

347209 Rev. 1
Down Arrow Up Arrow
R-Phycoerythrin (PE), is part of the BD family of Phycobiliprotein dyes. This fluorochrome is a multimeric fluorescent phycobiliprotein with excitation maximum (Ex Max) of 496 nm and 566 nm and an emission maximum (Em Max) at 576 nm. PE is designed to be excited by the Blue (488 nm), Green (532 nm) and Yellow-Green (561 nm) lasers and detected using an optical filter centered near 575 nm (e.g., a 575/26-nm bandpass filter). As PE is excited by multiple lasers, this can result in cross-laser excitation and fluorescence spillover on instruments with various combinations of Blue, Green, and Yellow-Green lasers. Please ensure that your instrument’s configurations (lasers and optical filters) are appropriate for this dye.
Yellow-Green 488 nm, 532 nm, 561 nm
496 nm, 566 nm
576 nm
347209 Rev.1
Down Arrow Up Arrow

研发参考 (7)

  1. Fuller SA, Phillips A, Coleman MS. Affinity purification and refined structural characterization of terminal deoxyribonucleotidyl transferase. Biochem J. 1985; 231:105-113. (Biology).
  2. Gore SD, Kastan MB, Civin CI. Normal human bone marrow precursors that express terminal deoxynucleotidyl transferase include T-cell precursors and possible lymphoid stem cells.. Blood. 1991; 77(8):1681-90. (Biology). 查看参考
  3. Horvatinovich JM, Sparks SD, Borowitz MJ. Detection of terminal deoxynucleotidyl transferase by flow cytometry: a three color method. Cytometry. 1994; 18:228-230. (Biology).
  4. Komori T, Okada A, Stewart V, Alt FW. Lack of N regions in antigen receptor variable regions of TdTdeficient lymphocytes. Science. 1993; 261:1171-1175. (Biology).
  5. Landau NR, Schatz DG, Rosa M, Baltimore D. Increased frequency of N-region insertion in a murine pre–B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector. Mol Cell Biol. 1987; 7:3237-3243. (Biology).
  6. Paietta E, Meenan B, Heavey C, Thomas D. Detection of terminal transferase in acute myeloid leukemia by flow cytometry. Cytometry. 1994; 16:256-261. (Biology).
  7. Roma AO, Kutok JL, Shaheen G, Dorfman DM. A novel, rapid, multiparametric approach for flow cytometric analysis of intranuclear terminal deoxynucleotidyl transferase. Am J Clin Pathol. 1999; 112:343-348. (Biology).
查看所有文件 (7) 查看更少内容
347209 Rev. 1

Please refer to Support Documents for Quality Certificates

Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described

Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.