Skip to main content Skip to navigation
A series of test tubes in a laboratory.

CD56 (NCAM)

CD56 (NCAM)

CD56 is also known as neural cell adhesion molecule 1 (NCAM-1), neural cell adhesion molecule (NCAM) or embryonic NCAM (E-NCAM).1 It is a member of the immunoglobulin superfamily and expressed on nearly all tissues. Depending on the cell type, three primary isoforms (NCAM-120, NCAM-140 and NCAM-180) are generated by alternative splicing from one single gene NCAM1.2 BD carries several anti-CD56 pan antibody clones for CD56 detection in human, non-human primates and mouse targets.

CD56 Biology
Down Arrow

Function

CD56 is a cell adhesion molecule involved in cell-to-cell and cell-matrix interactions during development and differentiation. CD56 interacts with components of the extracellular matrix such as fibroblast growth factor receptors and N-cadherin. It also triggers signaling cascades involving FYN-focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K).

During nervous system development, CD56 regulates neurogenesis, neurite outgrowth, axonal guidance, synapse formation and cell migration. In the hematopoietic system, CD56 is involved in the expansion of T lymphocytes, B lymphocytes and natural killer (NK) cells.3,4 In humans, CD56 is a common phenotypic marker for NK cells.

 

 

Structure

The CD56 isoforms are heavily glycosylated proteins named by their molecular weights.5 The larger isoforms are transmembrane proteins while NCAM-120 has no intracellular residues.
 

  • NCAM-180 has a large cytoplasmic domain.
  • NCAM-140 has a short cytoplasmic tail.
  • NCAM-120 is glycophosphatidylinositol (GPI)-linked to the cell membrane.
     

NCAM-120 is the predominant isoform in immune cells.6

 

 

CD56 in Diseases

CD56 can be used as a biomarker to detect malignant tumors in the nervous system (e.g., medulloblastoma and astrocytoma), malignant NK/T-cell lymphomas and neuroendocrine carcinoma.7 Due to its overexpression in several cancers, anti-CD56 antibody-drug conjugates, such as lorvotuzumab mertansine7 and promiximab-duocarmycin, have been developed.8 CD56 can also be a surrogate marker for other diseases such as COVID-19 and dementia associated with Alzheimer’s disease.9

 

 

Antigen Distribution

CD56 is expressed in brain, on CD16+ natural killer (NK) cells, T cell subsets and dendritic cells but not on myeloid cells, erythrocytes or B cells. CD56 expression on NK lymphocytes increases upon activation.7 CD56 expression on non-human primate lymphocytes is similar to that observed on human peripheral blood lymphocytes, with a subset of CD16+ cells co-expressing CD56.10 Clone MY31 is appropriate for detection of CD56 in non-human primates.

CD56 and CD16 expression can be used to characterize NK cell populations. CD16+CD56dim NK cells make up 90% of peripheral blood NK cell populations that can migrate to sites of inflammation. They are characterized by their cytolytic activity, expressing high levels of granzymes, perforin and cytolytic granules but low levels of cytokines. Conversely, CD16-CD56bright NK cells produce cytokines such as IFN-γ, TNF-α, GM-CSF, IL-10 and IL-13. They migrate to secondary lymphoid organs and have low cytotoxic properties.10

 

 

Demonstrated Applications of CD56 Detection

Our in-house clone R19-760 was developed to be compatible with select fixation and permeabilization buffers in flow cytometry applications. BD scientists incorporated R19-760 into a 16-color antibody panel to characterize subsets of cytotoxic T cells and NK cells. The cytolytic potential of these cell populations were analyzed through the detection of granzyme K, granzyme B and perforin.11

 

 

apps1

References

  1. Schlossman SF. Leucocyte Typing V: White Cell Differentiation Antigens: Proceedings of the Fifth International Workshop and Conference, Held in Boston, USA, 3-7 November, 1993. Oxford: Oxford University Press; 1995.
  2. Bennett IM, Zatsepina O, Zamai L, Azzoni L, Mikheeva T, Perussia B. Definition of a natural killer NKR-P1A+/CD56-/CD16- functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J Exp Med. 1996;184(5):1845-1856. doi:10.1084/jem.184.5.1845
  3. Crotta S, Stilla A, Wack A, et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med. 2001;195(1):35-42. doi:10.1084/jem.20011124
  4. Umezawa Y, Kuge S, Kikyo N, et al. Identity of brain-associated small cell lung cancer antigen and the CD56 (NKH-1/Leu-19) leukocyte differentiation antigen and the neural cell adhesion molecule. Jpn J Clin Oncol. 1991. doi:10.1093/oxfordjournals.jjco.a039467
  5. Van Acker HH, Van Acker ZP, Versteven M, et al. CD56 homodimerization and participation in anti-tumor immune effector cell functioning: A role for interleukin-15. Cancers. 2019;11(7):1029. doi:10.3390/cancers11071029
  6. Yu L, Lu Y, Yao Y, et al. Promiximab-duocarmycin, a new CD56 antibody-drug conjugates, is highly efficacious in small cell lung cancer xenograft models. Oncotarget. 2017;9(4):5197-5207. doi:10.18632/oncotarget.23708
  7. Solana C, Tarazona R, Solana R. Immunosenescence of natural killer cells, inflammation, and Alzheimer’s disease. Int J Alzheimer’s Dis. 2018;2018:1-9. doi:10.1155/2018/3128758
  8. Hong HS, Rajakumar PA, Billingsley JM, Reeves RK, Johnson RP. No monkey business: Why studying NK cells in non-human primates pays off. Front Immunol. 2013;4. doi:10.3389/fimmu.2013.00032
  9. Baracho GV, Kara N, Rigaud S, Lo E, Widmann SJ, Tyznik AJ. Functional phenotyping of circulating human cytotoxic T cells and NK cells using a 16-color flow cytometry panel. STAR Protocols. 2022;3(1):101069. doi:10.1016/j.xpro.2021.101069

Alexa Fluor™ is a trademark of Life Technologies Corporation.

CD56 Clones and Applications
Down Arrow

For Research Use Only. Not for use in diagnostic or therapeutic procedures.

23-23033-00