Skip to main content Skip to navigation
Alexa Fluor™ 647 Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158)

BD Pharmingen™ Alexa Fluor™ 647 Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158)

Clone HP-MA4

(RUO)
Alexa Fluor™ 647 Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158)
Multiparameter flow cytometric analysis of KIR2DL1/S1/S3/S5 (CD158) expression on peripheral blood leucocyte populations. Whole blood was stained with BD Horizon™ BV421 Mouse Anti-Human CD56 antibody (Cat. No. 562751/562752; Lower Plots) and either Alexa Fluor™ 647 Mouse IgG2b, κ Isotype Control (Cat. No. 557903; Left Plots) or Alexa Fluor™ 647 Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158) (Cat. No. 567234/567325; Right Plots). Erythrocytes were lysed with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899). Flow cytometry and data analysis were performed using a BD LSRFortessa™ X-20 Cell Analyzer System and FlowJo™ software. Upper Plots: The bivariate pseudocolor density plots showing the correlated expression of KIR2DL1/S1/S3/S5 (CD158) [or Ig isotype control staining] versus side light scatter signals (SSC-A) were derived from gated events with the forward and side-light scatter characteristics of intact leucocytes. Lower Plots: The bivariate pseudocolor density plots showing the correlated expression of KIR2DL1/S1/S3/S5 (CD158) [or Ig isotype control staining] versus CD56 were derived from gated events with the forward and side-light scatter characteristics of intact lymphocytes.
Multiparameter flow cytometric analysis of KIR2DL1/S1/S3/S5 (CD158) expression on peripheral blood leucocyte populations. Whole blood was stained with BD Horizon™ BV421 Mouse Anti-Human CD56 antibody (Cat. No. 562751/562752; Lower Plots) and either Alexa Fluor™ 647 Mouse IgG2b, κ Isotype Control (Cat. No. 557903; Left Plots) or Alexa Fluor™ 647 Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158) (Cat. No. 567234/567325; Right Plots). Erythrocytes were lysed with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899). Flow cytometry and data analysis were performed using a BD LSRFortessa™ X-20 Cell Analyzer System and FlowJo™ software. Upper Plots: The bivariate pseudocolor density plots showing the correlated expression of KIR2DL1/S1/S3/S5 (CD158) [or Ig isotype control staining] versus side light scatter signals (SSC-A) were derived from gated events with the forward and side-light scatter characteristics of intact leucocytes. Lower Plots: The bivariate pseudocolor density plots showing the correlated expression of KIR2DL1/S1/S3/S5 (CD158) [or Ig isotype control staining] versus CD56 were derived from gated events with the forward and side-light scatter characteristics of intact lymphocytes.
Product Details
Down Arrow Up Arrow


BD Pharmingen™
KIR2DL1 (CD158a/NKAT-1); KIR2DS1 (CD158h); KIR2DS3 (NKAT-7); KIR2DS5 (CD158g/NKAT-9)
Human (QC Testing)
Mouse BALB/c IgG2b, κ
Human NK Clone LB2
Flow cytometry (Routinely Tested)
5 µl
Aqueous buffered solution containing BSA and ≤0.09% sodium azide.
RUO


Preparation And Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated to the dye under optimum conditions and unreacted dye was removed.

Recommended Assay Procedures

BD™ CompBeads can be used as surrogates to assess fluorescence spillover (Compensation).  When fluorochrome conjugated antibodies are bound to BD™ CompBeads, they have spectral properties very similar to cells.   However, for some fluorochromes there can be small differences in spectral emissions compared to cells, resulting in spillover values that differ when compared to biological controls.  It is strongly recommended that when using a reagent for the first time, users compare the spillover on cells and BD™ CompBeads to ensure that BD™ CompBeads are appropriate for your specific cellular application.

Product Notices

  1. This reagent has been pre-diluted for use at the recommended Volume per Test. We typically use 1 × 10^6 cells in a 100-µl experimental sample (a test).
  2. An isotype control should be used at the same concentration as the antibody of interest.
  3. Source of all serum proteins is from USDA inspected abattoirs located in the United States.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  5. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
  6. Alexa Fluor® 647 fluorochrome emission is collected at the same instrument settings as for allophycocyanin (APC).
  7. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  8. This product is provided under an intellectual property license between Life Technologies Corporation and BD Businesses. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. For information on purchasing a license to this product for any other use, contact Life Technologies Corporation, Cell Analysis Business Unit Business Development, 29851 Willow Creek Road, Eugene, OR 97402, USA, Tel: (541) 465-8300. Fax: (541) 335-0504.
  9. Please refer to http://regdocs.bd.com to access safety data sheets (SDS).
  10. Alexa Fluor™ is a trademark of Life Technologies Corporation.
567324 Rev. 1
Antibody Details
Down Arrow Up Arrow
HP-MA4

The HP-MA4 monoclonal antibody specifically recognizes several Killer Cell Immunoglobulin-like Receptors (KIRs) which are also known as CD158 molecules. HP-MA4 recognizes Killer cell immunoglobulin-like receptor 2DL1 (encoded by KIR2DL1; aka, CD158a and NKAT-1), Killer cell immunoglobulin-like receptor 2DS1 (KIR2DS1; CD158h), Killer cell immunoglobulin-like receptor 2DS3 (KIR2DS3; NKAT-7), and Killer cell immunoglobulin-like receptor 2DS5 (KIR2DS5; CD158g, NKAT-9) which are collectively known as KIR2DL1/S1/S3/S5 (CD158). These type I transmembrane glycoproteins are encoded by polymorphic genes and have 2 extracellular Ig-like domains (KIR2D, domains D1 and D2) followed by a transmembrane region and either long (L) or short (S) cytoplasmic domains. Various CD158 molecules are differentially expressed by CD56dim natural killer (NK) cells and some T cells and can regulate their cytotoxic effector functions. Although different KIR gene content varies amongst haplotypes for individuals, certain "framework" genes including KIR3DL3, KIR3DP1, KIR3DL4, and KIR3DL2, are found in all haplotypes. KIR2DL1 has a long cytoplasmic domain with two tyrosine-based inhibitory motifs (ITIM) that enables inhibitory signal transduction by ligand-bound KIR2DL1 leading to reduced cytotoxic effector cell activity. KIR2DS1, KIR2DS3, KIR2DS5 (KIR2DS1/S3/S5) proteins each have a short cytoplasmic tail with a positively charged amino acid in their transmembrane region which allows association with the DAP12 transmembrane protein. DAP12 acts as an activating signal transduction element through its immunoreceptor tyrosine-based activation motifs (ITAMs) in its cytoplasmic domain leading to upregulated cytotoxic effector cell function. Some MHC class I molecules can serve as ligands for CD158 molecules, with HLA-C ligands reported for KIR2DL1, KIR2DS1, and KIR2DS5.

567324 Rev. 1
Format Details
Down Arrow Up Arrow
Alexa Fluor™ 647
Alexa Fluor™ 647 Dye is part of the BD red family of dyes. This is a small organic fluorochrome with an excitation maximum (Ex Max) at 653-nm and an emission maximum (Em Max) at 669-nm. Alexa Fluor 647 is designed to be excited by the Red laser (627-640 nm) and detected using an optical filter centered near 520-nm (e.g., a 660/20 nm bandpass filter). Please ensure that your instrument’s configurations (lasers and optical filters) are appropriate for this dye.
Alexa Fluor™ 647
Red 627-640 nm
653 nm
669 nm
567324 Rev.1
Citations & References
Down Arrow Up Arrow
View product citations for antibody "567324" on CiteAb

Development References (9)

  1. Beziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunol. 2017; 150(3):248-264. (Clone-specific: Flow cytometry). View Reference
  2. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunol. 2011; 132(3):315-325. (Biology). View Reference
  3. De Miguel M, López-Botet M. Characterization of monoclonal antibodies specific for receptors of the KIR family. Inmunologia. 2002; 21(4):187-193. (Immunogen: Flow cytometry, Functional assay, Immunoprecipitation, Inhibition). View Reference
  4. Döhring C, Samaridis J, Colonna M. Alternatively spliced forms of human killer inhibitory receptors.. Immunogenetics. 1996; 44(3):227-30. (Clone-specific: Flow cytometry, Immunoprecipitation). View Reference
  5. Estefanía E, Flores R, Gómez-Lozano N, Aguilar H, López-Botet M, Vilches C. Human KIR2DL5 is an inhibitory receptor expressed on the surface of NK and T lymphocyte subsets.. J Immunol. 2007; 178(7):4402-10. (Clone-specific: Flow cytometry, Immunoprecipitation). View Reference
  6. Huard B, Prigent P, Pagès F, Bruniquel D, Triebel F. T cell major histocompatibility complex class II molecules down-regulate CD4+ T cell clone responses following LAG-3 binding. Eur J Immunol. 1996; 26(5):1180-1186. (Biology). View Reference
  7. Ikeda MA, Jakoi L, Nevins JR. A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc Natl Acad Sci U S A. 1996; 93(8):3215-3220. (Biology). View Reference
  8. Middleton D, Gonzelez F. The extensive polymorphism of KIR genes. Immunol. 2010; 129(1):8-19. (Biology). View Reference
  9. Pende D, Falco M, Vitale M, et al. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Front Immunol. 2019; 10:1179. (Clone-specific: Flow cytometry). View Reference
View All (9) View Less
567324 Rev. 1

 

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.