Skip to main content Skip to navigation
Anti-Human CD4 FITC/CD69 PE/CD3 PerCP

BD FastImmune™ Anti-Human CD4 FITC/CD69 PE/CD3 PerCP

(RUO (GMP))
Product Details
Down Arrow Up Arrow


BD FastImmune™
Human
Flow cytometry
RUO (GMP)
Phosphate buffered saline with BSA and 0.1% sodium azide.


Description

CD4, clone SK3, is derived from hybridization of mouse NS-1 myeloma cells with spleen cells from BALB/c mice immunized with human peripheral blood T lymphocytes.

CD69, clone L78, is derived from hybridization of mouse Sp2/0-Ag14 myeloma cells with lymph node cells from BALB/c mice immunized with a CD8+ alloantigen-directed cytotoxic T-lymphocyte (CTL) cell line.

CD3, clone SK7, is derived from hybridization of mouse NS-1 myeloma cells with spleen cells from BALB/c mice immunized with human thymocytes.

CD4 recognizes an antigen that interacts with class II molecules of the major histocompatibility complex (MHC). CD4 is the primary receptor for the human immunodeficiency virus (HIV). The cytoplasmic portion of the antigen is associated with the protein tyrosine kinase p56lck. The CD4 antigen may regulate the function of theCD3 antigen/T-cell antigen receptor (TCR) complex. CD4 also reacts with monocytes/macrophages that have an antigen density lower than that on helper/inducer T lymphocytes.  CD69 recognizes a very early human lymphocyte activation antigen.

The CD69 antigen is a surface homodimer formed by the association of 28-kilodalton (kd) and 32-kd chains that are held together by disulfide bridges.

CD3 recognizes the epsilon chain of the CD3 antigen/T-cell antigen receptor (TCR) complex. This complex is composed of at least six proteins that range in molecular weight from 20 to 30 kd. The antigen recognized by the CD3 antibody is noncovalently associated with either α/β or γ/δ TCR (70 to 90 kd).

Preparation And Storage

The FastImmune reagent is supplied as a combination of CD4 FITC, CD69 PE, and CD3 PerCP in 1.0 mL of phosphate-buffered saline (PBS) containing bovine serum albumin (BSA) and 0.1% sodium azide. The vial should be stored at 2° to 8°C. Conjugated forms should not be frozen and should be protected from prolonged exposure to light. Each reagent is stable for the period shown on the bottle label when stored as directed.

340365 Rev. 1
Components
Down Arrow Up Arrow
Description Clone Isotype EntrezGene ID
CD3 PerCP SK7 IgG1, κ N/A
CD4 FITC SK3 IgG1, κ 920
CD69 PE L78 IgG1, κ N/A
340365 Rev. 1
Citations & References
Down Arrow Up Arrow

Development References (27)

  1. Bernard A, Boumsell L, Hill C. Joint report of the first international workshop on human leucocyte differentiation antigens by the investigators of the participating laboratories: T2 protocol. In: Bernard A. A. Bernard .. et al., ed. Leucocyte typing : human leucocyte differentiation antigens detected by monoclonal antibodies : specification, classification, nomenclature = Typage leucocytaire : antigènes de différenciation leucocytaire humains révélés par les anticorps monoclonaux : "Rapports des études communes". Berlin New York: Springer-Verlag; 1984:25-60.
  2. Brenner M, Groh V, Porcelli A, et al. Knapp W, Dörken B, Gilks W, et al, ed. Leucocyte Typing IV: White Cell Differentiation Antigens. 1989:1049-1053.
  3. Chen JH, Prince H, Buck D, et al. Leu-23: an early activation antigen on human lymphocytes. Fed Proc. 1988; 2:A1214. (Biology).
  4. Clevers H, Alarcón B, Wileman T, Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annual Rev Immunol. 1988; 6:629. (Biology).
  5. Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus.. Nature. 312(5996):763-7. (Biology). View Reference
  6. Evans RL, Wall DW, Platsoucas CD, et al. Thymus-dependent membrane antigens in man: inhibition of cell-mediated lympholysis by monoclonal antibodies to TH2 antigen. Proc Natl Acad Sci U S A. 1981; 78(1):544-548. (Biology). View Reference
  7. Garson JA, Beverley PCL, Coakham HB, Harper EJ. Monoclonal antibodies against human T lymphocytes label Purkinje neurones of many species. Nature. 1982; 298:375-377. (Biology).
  8. Graber M, Bockenstedt LK, Weiss A. Signaling via the inositol phospholipid pathway by T cell antigen receptor is limited by receptor number.. J Immunol. 1991; 146(9):2935-43. (Biology). View Reference
  9. Haynes BF. Summary of T-cell studies performed during the Second International Workshop and Conference on Human Leukocyte Differentiation Antigens. In: Reinherz EL. Ellis L. Reinherz .. et al., ed. Leukocyte typing II. New York: Springer-Verlag; 1986:3-30.
  10. Kan EAR, Wang CY, Wang LC, Evans RL. Noncovalently bonded subunits of 22 and 28 kd are rapidly internalized by T cells reacted with Anti–Leu-4 antibody. J Immunol. 1983; 131:536-539. (Biology).
  11. Knowles RW. Immunochemical analysis of the T-cell–specific antigens. In: Reinherz EL. Ellis L. Reinherz .. et al., ed. Leukocyte typing II. New York: Springer-Verlag; 1986:259-288.
  12. Lanier LL, Allison JP, Phillips JH. Correlation of cell surface antigen expression on human thymocytes by multi-color flow cytometric analysis: implications for differentiation. J Immunol. 1986; 137(8):2501-2507. (Biology). View Reference
  13. Lanier LL, Buck DW, Rhodes L, et al. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen.. J Exp Med. 1988; 167(5):1572-85. (Biology). View Reference
  14. Lanier LL, Buck DW, Rhodes L, et al. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen.. J Exp Med. 1988; 167(5):1572-85. (Biology). View Reference
  15. Ledbetter JA, Evans RL, Lipinski M, Cunningham-Rundles C, Good RA, Herzenberg LA. Evolutionary conservation of surface molecules that distinguish T lymphocyte helper/inducer and cytotoxic/suppressor subpopulations in mouse and man. J Exp Med. 1981; 153(2):310-323. (Biology). View Reference
  16. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain.. Cell. 1986; 47(3):333-48. (Biology). View Reference
  17. Maino VC, Suni MA, Ruitenberg JJ. Rapid flow cytometric method for measuring lymphocyte subset activation.. Cytometry. 1995; 20(2):127-33. (Biology). View Reference
  18. Reichert T, DeBruyere M, Deneys V, et al. Lymphocyte subset reference ranges in adult Caucasians. Clin Immunol Immunopathol. 1991; 60(2):190-208. (Biology). View Reference
  19. Rudd CE, Burgess KE, Barber EK, Schlossman SF. Knapp W, Dörken B, Gilks WR, et al, ed. Leucocyte Typing IV: White Cell Differentiation Antigens. New York, NY: Oxford University Press; 1989:326-327.
  20. Schwarting R, Biedobitek G, Stein H. Knapp W, Dörken B, Gilks WR, et al, ed. Leucocyte Typing IV: White Cell Differentiation Antigens. New York, NY: Oxford University Press; 1989:428-432.
  21. Testi R, D'Ambrosio D, De Maria R, Santoni A. The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today. 1994; 15:479-483. (Biology).
  22. Testi R, Philips J, Lanier LL. Constitutive expression of a phosphorylated activation (Leu-23) by CD3 bright thymocytes. J Immunol. 1988; 141:2257. (Biology).
  23. Testi R, Philips JH, Lanier LL. Leu-23 induction as an early marker for functional CD3/T cell antigen receptor triggering: requirement for receptor cross-linking, prolonged elevation of intracellular (Ca ++ ), and stimulation of protein kinase C. J Immunol. 1988; 2:1214. (Biology).
  24. Testi R, Pulcinelli F, Frati L, Gazzaniga PP, Santoni A. CD69 is expressed on platelets and mediates platelet activation and aggregation.. J Exp Med. 1990; 172(3):701-7. (Biology). View Reference
  25. Wood GS, Warner NL, Warnke RA. Anti–Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J Immunol. 1983; 131(1):212-216. (Biology). View Reference
  26. van Dongen JJM, Krissansen GW, Wolvers-Tettero ILM, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood. 1988; 71:603-612. (Biology).
  27. van Dongen JJM, Krissansen GW, Wolvers-Tettero ILM, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood. 1988; 71:603-612. (Biology).
View All (27) View Less
340365 Rev. 1

Please refer to Support Documents for Quality Certificates

Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described

Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures. 

 

Although not required, these products are manufactured in accordance with Good Manufacturing Practices.