-
Instruments
-
Flow Cytometers
- Clinical Cell Analyzers
-
Research Cell Analyzers
- BD® LSR II Flow Cytometer
- BD FACSCelesta™ Cell Analyzer
- BD FACSLyric™ Research System
- LSRFortessa™ Cell Analyzer
- LSRFortessa™ X-20
- FACSymphony™ A5
- BD Accuri™ C6
- FACSVerse™
- FACSymphony™ A3
- BD Accuri™ C6 Plus
- FACSymphony™ A5 SE Cell Analyzer
- FACSymphony™ A1 Cell Analyzer
- BD FACSDiscover™ A8 Research Cell Analyzer
- Research Cell Sorters
- Clinical Sample Prep Systems
- Single-Cell Multiomics Systems
-
Flow Cytometers
-
Reagents
-
Flow Cytometry Reagents
- Clinical Diagnostics
-
Research Reagents
- BD Horizon RealViolet™ 828 for Flow Cytometry
- Quality and Reproducibility
- Single Color Antibodies RUO
- Panels Multicolor Cocktails RUO
- Flow Cytometry Controls and Lysates
- buffers and Supporting Reagents RUO
- Cell Function Analysis Stains Dyes
- Single Color Antibodies
- Compensation Beads
- BD Horizon™ Human T Cell Backbone Panel
- BD Pharmingen™ MonoBlock™ Leukocyte Staining Buffer
- BV605 Transition
- BD Horizon RealBlue™ 670 for Flow Cytometry
- BD Horizon RealBlue™ 780 for Flow Cytometry
- BD Horizon RealYellow™ 586
- BD Horizon RealYellow™ 610
- BD Horizon RealYellow™ 703
- BD Horizon RealBlue™ 824 for Flow Cytometry
- BD Horizon RealYellow™ 743
- BD Horizon RealYellow™ 775
- BD Horizon RealRed™ 688 Reagents
- Clinical Discovery
-
Western Blotting and Molecular Reagents
- Immunoassay Reagents
-
Single-Cell Multiomics Reagents
- BD® AbSeq Assay
-
BD® Single-Cell Multiplexing Kit
-
BD Rhapsody™ ATAC-Seq Assays
-
BD Rhapsody™ Whole Transcriptome Analysis (WTA) Amplification Kit
-
BD Rhapsody™ TCR/BCR Next Multiomic Assays
-
BD Rhapsody™ Targeted mRNA Kits
-
BD Rhapsody™ Accessory Kits
-
BD Rhapsody™ TCR/BCR Profiling Assays for Human and Mouse
- BD® OMICS-One Protein Panels
-
Functional Assays
-
Microscopy and Imaging Reagents
-
Cell Preparation and Separation Reagents
-
Flow Cytometry Reagents
-
-
- BD® LSR II Flow Cytometer
- BD FACSCelesta™ Cell Analyzer
- BD FACSLyric™ Research System
- LSRFortessa™ Cell Analyzer
- LSRFortessa™ X-20
- FACSymphony™ A5
- BD Accuri™ C6
- FACSVerse™
- FACSymphony™ A3
- BD Accuri™ C6 Plus
- FACSymphony™ A5 SE Cell Analyzer
- FACSymphony™ A1 Cell Analyzer
- BD FACSDiscover™ A8 Research Cell Analyzer
-
-
-
- BD Horizon RealViolet™ 828 for Flow Cytometry
- Quality and Reproducibility
- Single Color Antibodies RUO
- Panels Multicolor Cocktails RUO
- Flow Cytometry Controls and Lysates
- buffers and Supporting Reagents RUO
- Cell Function Analysis Stains Dyes
- Single Color Antibodies
- Compensation Beads
- BD Horizon™ Human T Cell Backbone Panel
- BD Pharmingen™ MonoBlock™ Leukocyte Staining Buffer
- BV605 Transition
- BD Horizon RealBlue™ 670 for Flow Cytometry
- BD Horizon RealBlue™ 780 for Flow Cytometry
- BD Horizon RealYellow™ 586
- BD Horizon RealYellow™ 610
- BD Horizon RealYellow™ 703
- BD Horizon RealBlue™ 824 for Flow Cytometry
- BD Horizon RealYellow™ 743
- BD Horizon RealYellow™ 775
- BD Horizon RealRed™ 688 Reagents
-
-
-
- Brazil (English)
-
Change location/language
Old Browser
Looks like you're visiting us from {countryName}.
Would you like to stay on the current location site or be switched to your location?
Single-cell genomic approaches for developing the next generation of immunotherapies
In recent times, developments in genomics, proteomics and single-cell technologies, coupled with advances in allied areas like computing and antibody engineering have enabled significant progress in drug development. Current drug development platforms, however, take only simplified cellular models or molecular readouts into account at the functional level. This makes it difficult to evaluate the effects of a drug at the broader level in tumors, which are heterogeneous and complex collections of cells.
Immunotherapy has revolutionised cancer treatment in recent years, by changing the mindset from that of targeting tumor cells to one involving the rejuvenation of the immune system to attack the tumor. Approaches involving the inhibition of checkpoint regulators like PD-1, its ligand PD-L1 and CTLA-4 are now frequently used in the treatment of some cancers. However, there is a wide range in the efficacies and response of both cancers and patients to such treatments, indicating that the detailed, mechanistic understanding of the working of cells is missing. The need, therefore, is to implement pathways that can not only discover new therapeutic targets but can also assess the effects of therapeutic agents on all the cells and molecular pathways in a tumor and its microenvironment. Recent developments in single-cell technologies are making such complex analyses possible, at a high resolution.
This perspective by Yofe et.al discusses the role that single-cell analysis can play in driving drug development and the advantages that can be had by adopting single-cell technologies in immunotherapy research.
Read the Nature Medicine article on single-cell genomic approaches for the next generation of immunotherapies.
BD and the BD Logo are trademarks of Becton, Dickinson and Company or its affiliates. © 2020 BD. All rights reserved.
Products are for Research Use Only. Not for use in diagnostic or therapeutic procedures.