Skip to main content Skip to navigation
BV480 Rat Anti-CD11b
BV480 Rat Anti-CD11b
Flow cytometric analysis of CD11b expression on mouse bone-marrow cells. Mouse bone-marrow cells were preincubated with Purified Rat Anti-Mouse CD16/CD32 antibody (Mouse BD Fc Block™) (Cat. No. 553141/553142). The cells were then stained with either BD Horizon™ BV480 Rat IgG2b, κ Isotype Control (Cat. No. 565649; dashed line histogram) or BD Horizon BV480 Rat Anti-CD11b antibody (Cat. No. 566117/566149; solid line histogram). The fluorescence histogram showing CD11b expression (or Ig Isotype control staining) was derived from gated events with the forward and side light-scatter characteristics of myeloid cells (ie, moderate-to-high side light-scatter-gated events). Flow cytometric analysis was performed using a BD LSRFortessa™ Cell Analyzer System.
Flow cytometric analysis of CD11b expression on mouse bone-marrow cells. Mouse bone-marrow cells were preincubated with Purified Rat Anti-Mouse CD16/CD32 antibody (Mouse BD Fc Block™) (Cat. No. 553141/553142). The cells were then stained with either BD Horizon™ BV480 Rat IgG2b, κ Isotype Control (Cat. No. 565649; dashed line histogram) or BD Horizon BV480 Rat Anti-CD11b antibody (Cat. No. 566117/566149; solid line histogram). The fluorescence histogram showing CD11b expression (or Ig Isotype control staining) was derived from gated events with the forward and side light-scatter characteristics of myeloid cells (ie, moderate-to-high side light-scatter-gated events). Flow cytometric analysis was performed using a BD LSRFortessa™ Cell Analyzer System.
Product Details
Down Arrow Up Arrow


BD Horizon™
Itgam; Integrin alpha-M; Ly-40; Mac-1a; Mac-1 alpha; CR3A; CR-3 alpha chain
Mouse (QC Testing), Human (Tested in Development)
Rat DA, also known as DA/HA IgG2b, κ
Mouse Splenic Cells
Flow cytometry (Routinely Tested)
0.2 mg/ml
16409
AB_2739519
Aqueous buffered solution containing BSA and ≤0.09% sodium azide.
RUO


Preparation And Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated with BD Horizon BV480 under optimum conditions, and unconjugated antibody and free BD Horizon BV480 were removed.

Recommended Assay Procedures

  For optimal and reproducible results, BD Horizon Brilliant Stain Buffer should be used anytime two or more BD Horizon Brilliant dyes are used in the same experiment.  Fluorescent dye interactions may cause staining artifacts which may affect data interpretation.  The BD Horizon Brilliant Stain Buffer was designed to minimize these interactions.  More information can be found in the Technical Data Sheet of the BD Horizon Brilliant Stain Buffer (Cat. No. 563794/566349) or the  the BD Horizon Brilliant Stain Buffer Plus (Cat. No. 566385).

For Immunofluorescence Applications:

The use of a mounting reagent (eg, ProLong® Gold) is highly recommended to maximize the photostability of BV480.  For confocal microscopy systems, a 440 nm laser is the optimal excitation source and the recommended emission filter is a 485/20 nm bandpass filter.  

For epifluorescence microscopes with broad spectrum excitation sources,  the recommended excitation and emission filters are 445/20 nm and 485/20 nm bandpass filters, respectively.  For specific multicolor imaging applications, the exact filter configurations should be optimized by the end user. For additional instrument/filter configuration information, please visit http://www.bdbiosciences.com/research/cellularimaging.

Product Notices

  1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
  2. An isotype control should be used at the same concentration as the antibody of interest.
  3. Source of all serum proteins is from USDA inspected abattoirs located in the United States.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  5. BD Horizon Brilliant Violet 480 is covered by one or more of the following US patents: 8,575,303; 8,354,239.
  6. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  7. BD Horizon Brilliant Violet 480 is covered by one or more of the following US patents: 8,575,303; 8,354,239.
  8. BD Horizon Brilliant Stain Buffer is covered by one or more of the following US patents: 8,110,673; 8,158,444; 8,575,303; 8,354,239.
  9. Species cross-reactivity detected in product development may not have been confirmed on every format and/or application.
  10. ProLong® is a registered trademark of Thermo Fisher Scientific, Inc. Waltham, MA.
  11. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
566117 Rev. 2
Antibody Details
Down Arrow Up Arrow
M1/70

The M1/70 monoclonal antibody specifically binds to CD11b, also known as Integrin alpha M (Itgam or αM). CD11b is a 170-kDa type 1 transmembrane glycoprotein and belongs to the Integrin alpha chain family. CD11b serves as the alpha chain of the heterodimeric Mac-1 integrin (CD11b/CD18, αMβ2), also known as complement receptor 3 (CR3). Mac-1 mediates adhesion to ICAM-1 (CD54), ICAM-2 (CD102), fibrinogen and binding to C3bi.  Mac-1 is expressed at varying levels on granulocytes, macrophages, myeloid-derived dendritic cells, natural killer cells, microglia, and B-1 B lymphocytes.  Mac-1 expression is rapidly upregulated on neutrophils after activation, in the same time period that CD62L (L-selectin) is shed from the cell surface.  The M1/70 antibody reportedly blocks cell adherence and C3bi binding but does not block cell-mediated lysis.  Cross-reaction of the M1/70 antibody with CD11b expressed on human monocytes, polymorphonuclear leukocytes, and NK cells has been reported.

  

The antibody was conjugated to BD Horizon BV480 which is part of the BD Horizon Brilliant™ Violet family of dyes. With an Ex Max of 436-nm and Em Max at 478-nm, BD Horizon BV480 can be excited by the violet laser and detected in the BD Horizon BV510 (525/40-nm) filter set.  BV480 has less spillover into the BV605 detector and, in general, is brighter than BV510.

566117 Rev. 2
Format Details
Down Arrow Up Arrow
BV480
The BD Horizon Brilliant Violet™ 480 (BV480) Dye is part of the BD Horizon Brilliant Violet™ family of dyes. This polymer-technology fluorochrome has an excitation maximum (Ex Max) of 440-nm and an emission maximum (Em Max) of 479-nm. Driven by BD innovation, BV480 is designed to be excited by the violet laser (405-nm) and detected using an optical filter centered near 480-nm (e.g., a 525/50 bandpass filter). The increased fluorescence intensity of BV480 and narrower emission spectra, make it a good alternative for BV510 or V500. Due to its excitation profile, BV480 will also has less cross-laser excitation with the UV laser, resulting in less spillover into UV channels compared to BV510. Please ensure that your instrument’s configurations (lasers and optical filters) are appropriate for this dye.
altImg
BV480
Violet 405 nm
440 nm
479 nm
566117 Rev.2
Citations & References
Down Arrow Up Arrow
View product citations for antibody "566117" on CiteAb

Development References (12)

  1. Ault KA, Springer TA. Cross-reaction of a rat-anti-mouse phagocyte-specific monoclonal antibody (anti-Mac-1) with human monocytes and natural killer cells. J Immunol. 1981; 126(1):359-364. (Clone-specific: Flow cytometry, Fluorescence activated cell sorting, Radioimmunoassay). View Reference
  2. Beller DI, Springer TA, Schreiber RD. Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med. 1982; 156(4):1000-1009. (Clone-specific: Blocking, Inhibition). View Reference
  3. Driver DJ, McHeyzer-Williams LJ, Cool M, Stetson DB, McHeyzer-Williams MG. Development and maintenance of a B220- memory B cell compartment. J Immunol. 2001; 167(3):1393-1405. (Clone-specific: Flow cytometry, Immunofluorescence). View Reference
  4. Kaji K, Takeshita S, Miyake K, Takai T, Kudo A. Functional association of CD9 with the Fc gamma receptors in macrophages. J Immunol. 2001; 166(5):3256-3265. (Clone-specific: Fluorescence microscopy, Immunofluorescence). View Reference
  5. Kishimoto TK, Jutila MA, Berg EL, Butcher EC. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science. 1989; 245(4923):1238-1241. (Biology). View Reference
  6. Lagasse E, Weissman IL. Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods. 1996; 197(1-2):139-150. (Clone-specific: Flow cytometry). View Reference
  7. Lub M, van Kooyk Y, Figdor CG. Competition between lymphocyte function-associated antigen 1 (CD11a/CD18) and Mac-1 (CD11b/CD18) for binding to intercellular adhesion molecule-1 (CD54). J Leukoc Biol. 1996; 59(5):648-655. (Clone-specific: Immunoprecipitation). View Reference
  8. Sanchez-Madrid F, Simon P, Thompson S, Springer TA. Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac-1. J Exp Med. 1983; 158(2):586-602. (Clone-specific: Immunoaffinity chromatography, Immunoprecipitation, Inhibition). View Reference
  9. Springer T, Galfre G, Secher D, Milstein C. Monoclonal xenogeneic antibodies to mouse leukocyte antigens: identification of macrophage-specific and other differentiation antigens. Curr Top Microbiol Immunol. 1978; 81:45-50. (Immunogen: Immunoprecipitation, Radioimmunoassay). View Reference
  10. Springer T, Galfre G, Secher DS, Milstein C. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol. 1979; 9(4):301-306. (Clone-specific: Flow cytometry, Immunoprecipitation). View Reference
  11. Springer T, Galfre G, Secher DS, Milstein C. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur J Immunol. 1978; 8(8):539-551. (Immunogen: Immunoprecipitation). View Reference
  12. Springer TA, Davignon D, Ho MK, Kurzinger K, Martz E, Sanchez-Madrid F. LFA-1 and Lyt-2,3, molecules associated with T lymphocyte-mediated killing; and Mac-1, an LFA-1 homologue associated with complement receptor function. Immunol Rev. 1982; 68:171-195. (Immunogen: Immunoprecipitation, Radioimmunoassay). View Reference
View All (12) View Less
566117 Rev. 2

 

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.

Refer to manufacturer's instructions for use and related User Manuals and Technical Data Sheets before using this product as described.

Comparisons, where applicable, are made against older BD technology, manual methods or are general performance claims. Comparisons are not made against non-BD technologies, unless otherwise noted.