Skip to main content Skip to navigation
Oligo Mouse Anti-Human CD178

Oligo Mouse Anti-Human CD178

Clone NOK-1

Product Details
Down Arrow Up Arrow

BD™ AbSeq
Fas ligand; FASL; FASLG; CD95 ligand; CD95L; CD95-L; TNFSF6; APTL; APT1LG1
2 µl
Mouse IgG1
Human (Tested in Development)
Single Cell 3' Sequencing (Qualified)
Mouse T lymphoma cells (L5178Y) expressing human FasL
Aqueous buffered solution containing BSA and ≤0.09% sodium azide.

Preparation And Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography and conjugated to BD AbSeq oligonucleotide under optimal conditions.

Recommended Assay Procedures

Put all BD AbSeq Reagents to be pooled into a Latch Rack for 500 µL Tubes (Thermo Fisher Scientific Cat. No. 4900). Arrange the tubes so that they can be easily uncapped and re-capped with an 8-Channel Screw Cap Tube Capper (Thermo Fisher Scientific Cat. No. 4105MAT) and the reagents aliquoted with a multi-channel pipette.

BD AbSeq tubes should be centrifuged for ≥ 30 seconds at 400 × g to ensure removal of any content in the cap/tube threads prior to the first opening.

Product Notices

  1. This reagent has been pre-diluted for use at the recommended volume per test. Typical use is 2 µl for 1 × 10^6 cells in a 200-µl staining reaction.
  2. The production process underwent stringent testing and validation to assure that it generates a high-quality conjugate with consistent performance and specific binding activity. However, verification testing has not been performed on all conjugate lots.
  3. Please refer to for technical protocols.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  5. Source of all serum proteins is from USDA inspected abattoirs located in the United States.
  6. This product is covered by one or more of the following patents: US 8,835,358; US 9,290,808; US 9,290,809; US 9,315,857; US 9,567,645; US 9,567,646; US 9,598,736; US 9,708,659; and US 9,816,137. This product, and only in the amount purchased by buyer, may be used solely for buyer’s own internal research, in a manner consistent with the accompanying product literature. No other right to use, sell or otherwise transfer (a) this product, or (b) its components is hereby granted expressly, by implication or by estoppel. Diagnostic uses require a separate license.
  7. Illumina is a trademark of Illumina, Inc.
940089 Rev. 2
Antibody Details
Down Arrow Up Arrow

The NOK-1 monoclonal antibody specifically recognizes CD178. Fas (CD95; APO-1) is a 45 kDa cell surface protein that mediates apoptosis when cross-linked with agonistic anti-Fas antibodies or by Fas ligand (FasL; CD178). Fas belongs to the TNF (Tumor Necrosis Factor)/NGF (Nerve Growth Factor) receptor family, and is expressed in various tissues and cells including the thymus, liver, ovary and lung. CD178 (FasL), a member of the TNF cytokine family, induces apoptosis by binding to Fas, its cell-surface receptor. FasL may exist as either membrane bound or soluble forms and is expressed by activated T and NK cells. FasL may also be constitutively expressed in some immunologically privileged sites, e.g., eye and testis. Fas and FasL play an important role in the induction of apoptosis, and thus regulate a variety of immunological responses.

The NOK-1 antibody clone has been reported to recognize human FasL, recognizing both the membrane bound (FasL) and soluble (sFasL) forms. It is reported that the epitope for NOK-1 has been mapped to the COOH-terminus of FasL, at the region implicated in Fas binding. FasL and sFasL have been reported to migrate at reduced molecular weights of 40 and 26 kDa, respectively. However, the molecular weights observed in a particular sample may vary according to FasL and sFasL glycosylation and breakdown patterns as described in the literature.  The NOK-1 antibody clone is not recommended for the Western blot application.

Application Notes

The antibody was conjugated to an oligonucleotide that contains an antibody clone-specific barcode (ABC) flanked by a poly-A tail on the 3' end and a PCR handle (PCR primer binding site) on the 5' end.  The ABC for this antibody was designed to be used with other BD AbSeq oligonucleotides conjugated to other antibodies. All AbSeq ABC sequences were selected in silico to be unique from human and mouse genomes, have low predicted secondary structure, and have high Hamming distance within the BD AbSeq portfolio, to allow for sequencing error correction and unique mapping. The poly-A tail of the oligonucleotide allows the ABC to be captured by the BD Rhapsody™ system or other oligo-dT-based capture systems. The 5' PCR handle allows for efficient sequencing library generation for Illumina sequencing platforms.

940089 Rev. 2
Format Details
Down Arrow Up Arrow
940089 Rev.2
Citations & References
Down Arrow Up Arrow

Development References (9)

  1. Kayagaki N, Kawasaki A, Ebata T, et al. Metalloproteinase-mediated release of human Fas ligand. J Exp Med. 1995; 182(6):1777-1783. (Immunogen: Flow cytometry, Neutralization). View Reference
  2. Orlinick JR, Elkon KB, Chao MV. Separate domains of the human fas ligand dictate self-association and receptor binding. J Biol Chem. 1997; 272(51):32221-32229. (Clone-specific: Flow cytometry). View Reference
  3. Oyaizu N, Adachi Y, Hashimoto F, et al. Monocytes express Fas ligand upon CD4 cross-linking and induce CD4+ T cells apoptosis: a possible mechanism of bystander cell death in HIV infection. J Immunol. 1997; 158(5):2456-2463. (Clone-specific: Flow cytometry). View Reference
  4. Sieg S, Smith D, Yildirim Z, Kaplan D. Fas ligand deficiency in HIV disease. Proc Natl Acad Sci U S A. 1997; 94(11):5860-5865. (Clone-specific: Flow cytometry). View Reference
  5. Takahashi T, Tanaka M, Brannan CI, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994; 76(6):969-976. (Biology). View Reference
  6. Tanaka M, Suda T, Takahashi T, Nagata S. Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J. 1995; 14(6):1129-1135. (Biology). View Reference
  7. Villunger A, Egle A, Marschitz I, et al. Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells: a potential mechanism of tumor-induced suppression of immune surveillance. Blood. 1997; 90(1):12-20. (Clone-specific: Flow cytometry, Neutralization). View Reference
  8. Walker PR, Saas P, Dietrich PY. Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back. J Immunol. 1997; 158(10):4521-4524. (Clone-specific: Neutralization). View Reference
  9. Zavazava N, Kronke M. Soluble HLA class I molecules induce apoptosis in alloreactive cytotoxic T lymphocytes. Nat Med. 1996; 2(9):1005-1010. (Clone-specific: Flow cytometry, Neutralization). View Reference
View All (9) View Less
940089 Rev. 2

Please refer to Support Documents for Quality Certificates

Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described

Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.