Skip to main content Skip to navigation
Anti-Human CD8 FITC/CD69 PE/CD3 PerCP
Product Details
Down Arrow Up Arrow


BD FastImmune™
Human
Flow cytometry
RUO (GMP)
Phosphate buffered saline with BSA and 0.1% sodium azide.


Description

The CD8 antibody, clone SK1, is derived from hybridization of NS-1 mouse myeloma cells with spleen cells from BALB/c mice immunized with human peripheral blood T lymphocytes.

The CD69 antibody, clone L78, is derived from hybridization of Sp2/0-Ag14 mouse myeloma cells with lymph node cells from BALB/c mice immunized with a CD8+ alloantigen-directed cytotoxic T-lymphocyte (CTL) cell line.

The CD3 antibody, clone SK7, is derived from hybridization of NS-1 mouse myeloma cells with spleen cells from BALB/c mice immunized with human thymocytes.

The CD8 (Leu-2a) antibody recognizes the 32-kilodalton (kDa) α subunit of a disulfide-linked bimolecular complex of the CD8 antigen. The cytoplasmic domain of the α subunit of the CD8 antigen is associated with the protein tyrosine kinase p56lck. The CD8 molecule interacts with class I major histocompatibility complex (MHC) molecules resulting in increased adhesion. Binding of the CD8 molecule to class I MHC molecules enhances the activation of resting T lymphocytes.

The CD69 antibody recognizes a very early human lymphocyte activation antigen. The CD69 antigen is a surface homodimer formed by the association of 28-kDa and 32-kDa chains that are held together by disulfide bridges.

The CD3 antibody recognizes the epsilon chain of the CD3 antigen/T-cell antigen receptor (TCR) complex. This complex is composed of at least six proteins that range in molecular weight from 20 to 30 kDa. The antigen recognized by the CD3 antibody is noncovalently associated with either α/β or γ/δ TCR (70 to 90 kDa).


The CD8 antibody, clone SK1, is derived from hybridization of NS-1 mouse myeloma cells with spleen cells from BALB/c mice immunized with human peripheral blood T lymphocytes.

The CD69 antibody, clone L78, is derived from hybridization of Sp2/0-Ag14 mouse myeloma cells with lymph node cells from BALB/c mice immunized with a CD8+ alloantigen-directed cytotoxic T-lymphocyte (CTL) cell line.

The CD3 antibody, clone SK7, is derived from hybridization of NS-1 mouse myeloma cells with spleen cells from BALB/c mice immunized with human thymocytes.

The CD8 (Leu-2a) antibody recognizes the 32-kilodalton (kDa) α subunit of a disulfide-linked bimolecular complex of the CD8 antigen. The cytoplasmic domain of the α subunit of the CD8 antigen is associated with the protein tyrosine kinase p56lck. The CD8 molecule interacts with class I major histocompatibility complex (MHC) molecules resulting in increased adhesion. Binding of the CD8 molecule to class I MHC molecules enhances the activation of resting T lymphocytes.

The CD69 antibody recognizes a very early human lymphocyte activation antigen. The CD69 antigen is a surface homodimer formed by the association of 28-kDa and 32-kDa chains that are held together by disulfide bridges.

The CD3 antibody recognizes the epsilon chain of the CD3 antigen/T-cell antigen receptor (TCR) complex. This complex is composed of at least six proteins that range in molecular weight from 20 to 30 kDa. The antigen recognized by the CD3 antibody is noncovalently associated with either α/β or γ/δ TCR (70 to 90 kDa).

Preparation And Storage

Store vials at 2°C–8°C. Conjugated forms should not be frozen. Protect from exposure to light. Each reagent is stable until the expiration date shown on the bottle label when stored as directed.

340367 Rev. 1
Components
Down Arrow Up Arrow
Description Clone Isotype
CD3 PerCP SK7 IgG1, κ
CD8 FITC SK1 IgG1, κ
CD69 PE 2D7/Basophils IgG1, κ
340367 Rev. 1
Citations & References
Down Arrow Up Arrow

Development References (34)

  1. Anderson P, Blue ML, Morimoto C, Schlossman SF. Cross-linking of T3 (CD3) with T4 (CD4) enhances the proliferation of resting T lymphocytes. J Immunol. 1987; 139:678-682. (Biology).
  2. Bernard A, Boumsell L, Hill C. Joint report of the first international workshop on human leucocyte differentiation antigens by the investigators of the participating laboratories. In: Bernard A, Boumsell L, Dausset J, Milstein C, Schlossman SF, ed. Leucocyte Typing. New York, NY: Springer-Verlag; 1984:9-108.
  3. Brenner M, Groh V, Porcelli A, et al. Knapp W, Dörken B, Gilks W, et al, ed. Leucocyte Typing IV: White Cell Differentiation Antigens. 1989:1049-1053.
  4. Centers for Disease Control. Update: universal precautions for prevention of transmission of human immunodeficiency virus, hepatitis B virus, and other bloodborne pathogens in healthcare settings. MMWR. 1988; 37:377-388. (Biology).
  5. Chen JH, Prince H, Buck D, et al. Leu-23: an early activation antigen on human lymphocytes. Fed Proc. 1988; 2:A1214. (Biology).
  6. Clevers H, Alarcón B, Wileman T, Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annual Rev Immunol. 1988; 6:629. (Biology).
  7. Clinical and Laboratory Standards Institute. 2005. (Biology).
  8. Eichmann K, Johnson J, Falk I, Emmrich F. Effective activation of resting mouse T lymphocytes by cross-linking submitogenic concentrations of the T-cell antigen receptor with either Lyt-2 or L3T4. Eur J Immunol. 1987; 17:643-650. (Biology).
  9. Engleman EG, Benike CJ, Evans RL. Circulating antigen-specific suppressor T cells in a healthy woman: mechanism of action and isolation with a monoclonal antibody. Clin Res. 1981; 29:365A. (Biology).
  10. Engleman EG, Benike CJ, Glickman E, Evans RL. Antibodies to membrane structures that distinguish suppressor/cytotoxic and helper T lymphocyte subpopulations block the mixed leukocyte reaction in man. J Exp Med. 1981; 154(1):193-198. (Biology). View Reference
  11. Evans RL, Wall DW, Platsoucas CD, et al. Thymus-dependent membrane antigens in man: inhibition of cell-mediated lympholysis by monoclonal antibodies to TH2 antigen. Proc Natl Acad Sci U S A. 1981; 78(1):544-548. (Biology). View Reference
  12. Gallagher PF, Fazekas de St. Groth B, Miller JFAP. CD4 and CD8 molecules can physically associate with the same T-cell receptor. Proc Natl Acad Sci USA. 1989; 86:10044-10048. (Biology).
  13. Garson JA, Beverley PCL, Coakham HB, Harper EJ. Monoclonal antibodies against human T lymphocytes label Purkinje neurones of many species. Nature. 1982; 298:375-377. (Biology).
  14. Graber M, Bockenstedt LK, Weiss A. Signaling via the inositol phospholipid pathway by T cell antigen receptor is limited by receptor number.. J Immunol. 1991; 146(9):2935-43. (Biology). View Reference
  15. Haynes BF. Summary of T-cell studies performed during the Second International Workshop and Conference on Human Leukocyte Differentiation Antigens. In: Reinherz EL. Ellis L. Reinherz .. et al., ed. Leukocyte typing II. New York: Springer-Verlag; 1986:3-30.
  16. Kan EAR, Wang CY, Wang LC, Evans RL. Noncovalently bonded subunits of 22 and 28 kd are rapidly internalized by T cells reacted with Anti–Leu-4 antibody. J Immunol. 1983; 131:536-539. (Biology).
  17. Knowles RW. Immunochemical analysis of the T-cell–specific antigens. In: Reinherz EL. Ellis L. Reinherz .. et al., ed. Leukocyte typing II. New York: Springer-Verlag; 1986:259-288.
  18. Kotzin BL, Benike CJ, Engleman EG. Induction of immunoglobulin-secreting cells in the allogeneic mixed leukocyte reaction: regulation by helper and suppressor lymphocyte subsets in man. J Immunol. 1981; 127(9):931-935. (Biology). View Reference
  19. Lanier LL, Allison JP, Phillips JH. Correlation of cell surface antigen expression on human thymocytes by multi-color flow cytometric analysis: implications for differentiation. J Immunol. 1986; 137(8):2501-2507. (Biology). View Reference
  20. Lanier LL, Buck DW, Rhodes L, et al. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen.. J Exp Med. 1988; 167(5):1572-85. (Biology). View Reference
  21. Lanier LL, Le AM, Phillips JH, Warner NL, Babcock GF. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983; 131(4):1789-1796. (Biology). View Reference
  22. Ledbetter JA, Evans RL, Lipinski M, Cunningham-Rundles C, Good RA, Herzenberg LA. Evolutionary conservation of surface molecules that distinguish T lymphocyte helper/inducer and cytotoxic/suppressor subpopulations in mouse and man. J Exp Med. 1981; 153(2):310-323. (Biology). View Reference
  23. Ledbetter JA, Frankel AE, Herzenberg. Human Leu T-cell differentiation antigens: quantitative expression on normal lymphoid cells and cell lines. In: Hammerling G, Hammerling U, Kearney J, ed. Monoclonal Antibodies and T Cell Hybridomas: Perspectives and Technical News. New York: Elsevier/North Holland Biomedical Press; 1981:16-22.
  24. Maino VC, Suni MA, Ruitenberg JJ. Rapid flow cytometric method for measuring lymphocyte subset activation.. Cytometry. 1995; 20(2):127-33. (Biology). View Reference
  25. Moebius U. Knapp W, Dörken B, Gilks W, et al, ed. Leucocyte Typing IV. White Cell Differentiation Antigens. New York: Oxford University Press; 1989:342-343.
  26. Rudd CE, Burgess KE, Barber EK, Schlossman SF. Knapp W, Dörken B, Gilks WR, et al, ed. Leucocyte Typing IV: White Cell Differentiation Antigens. New York, NY: Oxford University Press; 1989:326-327.
  27. Schwarting R, Biedobitek G, Stein H. Knapp W, Dörken B, Gilks WR, et al, ed. Leucocyte Typing IV: White Cell Differentiation Antigens. New York, NY: Oxford University Press; 1989:428-432.
  28. Testi R, D'Ambrosio D, De Maria R, Santoni A. The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today. 1994; 15:479-483. (Biology).
  29. Testi R, Philips J, Lanier LL. Constitutive expression of a phosphorylated activation (Leu-23) by CD3 bright thymocytes. J Immunol. 1988; 141:2257. (Biology).
  30. Testi R, Philips JH, Lanier LL. Leu-23 induction as an early marker for functional CD3/T cell antigen receptor triggering: requirement for receptor cross-linking, prolonged elevation of intracellular (Ca ++ ), and stimulation of protein kinase C. J Immunol. 1988; 2:1214. (Biology).
  31. Testi R, Phillips JH, Lanier LL. T cell activation via Leu-23 (CD69).. J Immunol. 1989; 143(4):1123-8. (Biology). View Reference
  32. Testi R, Pulcinelli F, Frati L, Gazzaniga PP, Santoni A. CD69 is expressed on platelets and mediates platelet activation and aggregation.. J Exp Med. 1990; 172(3):701-7. (Biology). View Reference
  33. Wood GS, Warner NL, Warnke RA. Anti–Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J Immunol. 1983; 131(1):212-216. (Biology). View Reference
  34. van Dongen JJM, Krissansen GW, Wolvers-Tettero ILM, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood. 1988; 71:603-612. (Biology).
View All (34) View Less
340367 Rev. 1

Please refer to Support Documents for Quality Certificates

Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described

Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not For Use in Diagnostic Procedures.

RUO/GMP—For Research Use Only. Not for use in diagnostic or therapeutic procedures. Although not required, these products are manufactured in accordance with Good Manufacturing Practices.

23-22943-00