Skip to main content Skip to navigation
Image showing sets of test tubes used for experiments.

Apoptosis and Cell Death

Overview
Down Arrow
Apoptosis Detection Methods
Down Arrow
Apoptosis Tools and Resources
Down Arrow

Other BD Biosciences tools to streamline apoptosis research

 

There are many apoptosis triggers including certain cytokines, protein-protein interactions and chemicals. Once apoptosis starts, changes in the mitochondria membrane potential can be measured by flow cytometry using the BD® MitoScreen (JC-1) Flow Cytometry Kit or the BD Pharmingen™ MitoStatus Dyes. Decreases in mitochondrial membrane potential lead to increased mitochondrial membrane permeability and the release of soluble proteins such as cytochrome c and pro-caspases.

 

DNA fragmentation is one of the last phases in apoptosis, resulting from the activation of endonucleases during the apoptotic process. There are several established methods for the study of DNA fragmentation including isolation and separation of DNA fragments by agarose gel electrophoresis and end labeling. The BD® APO-BrdU™ Kit uses end labeling or the terminal deoxynucleotidyl transferase (TdT) nick end labeling (TUNEL method) to support the study of DNA fragmentation. In this assay, TdT catalyzes a template-independent addition of bromolated deoxyuridine triphosphates (Br-dUTP) to the 3'-hydroxyl (OH) termini of double- and single-stranded DNA. After the Br-dUTP is incorporated, these terminal sites of double- and single-stranded DNA are identified using flow cytometry by staining cells with labeled anti-BrdU. In contrast, the BrdU proliferation assay incorporates BrdU into newly synthesized DNA, into sites of DNA strand breaks.

 

At the end of apoptosis, cells become non-viable. Differentiating apoptotic from necrotic or dead cells is therefore key to isolating apoptotic populations. BD offers a number of viability products for identifying dead cells, including esterase activity probes and membrane integrity dyes.

 

With an overwhelming number of available techniques and products, selecting the most appropriate method is often difficult. To help make this choice easier, the overview below summarizes commercially available assays from a biological perspective.

 



Feature Measured Assays Key Features
Plasma membrane alterations (phosphatidylserine exposure) Annexin binding assay

Single conjugates

Annexin V kits
Detects early apoptosis markers

Quick and easy

Flow cytometry or immunofluorescence application
Caspase activation by spectrofluorometry Caspase activity assay kits and reagents Quick and easy
Caspase activation by immunoassay Active caspase-3 immunoassays, including active caspase-3 conjugates ELISA, flow cytometry or western blot in fixed cells or lysed tissues
Caspase activation by live cell activity probes Active caspase-3 live cell caspase probes:

BD Pharmingen™ Yellow-Green Live Cell Caspase Probe

BD Pharmingen™ Blue Live Cell Caspase Probe

BD Pharmingen™ Violet Live Cell Caspase Probe
Flow cytometry
Allows caspase activity detection in intact, unfixed cells
Key protein activity Key signaling protein conjugates, including:

Cleaved PARP

Bcl-2

CD95

H2AX
Available for flow cytometry, western blot, immunohistochemistry and immunofluorescence

Available in multiple formats, which allows multiplexing with other apoptosis and viability tools for better characterization of populations of interest
Mitochondrial changes BD® MitoScreen Kit

BD Pharmingen™ MitoStatus TMRE

BD Pharmingen™ MitoStatus Red
Fast, easy, single-cell resolution by flow cytometry or fluorescent microscopy
DNA fragmentation APO-BrdU™ TUNEL Assay

APO-DIRECT™ TUNEL Assay
Works with adherent cells, single-cell resolution in conjunction with cell cycle analysis by flow cytometry
Esterase activity BD Pharmingen™ Calcein AM

BD Pharmingen™ Calcein Blue AM
Measures viability in intact, unfixed cells by flow cytometry
Membrane integrity by nucleic acid detection Propidium Iodide

7-AAD

DAPI

DRAQ7™

BD Via-Probe™ Green

Nucleic Acid Stain

BD Via-Probe™ Red

Nucleic Acid Stain
Measures viability in intact, unfixed cells for flow cytometry by staining nucleic acid in dead cells, which are permeable to the dyes

Available for multiple laser lines for ease of panel design
Membrane integrity by dye exclusion BD Horizon™ Fixable Viability Stains Measures viability in fixed cells for flow cytometry by staining the surface of intact cells and the surface and interior of dead cells

Available in 10 colors for ease of panel design

Simultaneous studies of apoptosis, cell cycle and DNA damage

Apoptosis and cell proliferation assays are particularly useful for basic cancer research and drug discovery. Comparing data across different experiments can be challenging due to variability introduced by sample handling, timing and variability within the sample.

 

Multicolor flow cytometry addresses these challenges and is an excellent tool to study apoptosis and cell proliferation. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells. Antibodies to phosphoproteins can be used to examine phosphorylation events.

 
Data sets comparing cleaved PARP Alexa®Fluor and PhosphoH2AX AlexaFluor®647 results.
performance1

For Research Use Only. Not for use in diagnostic or therapeutic procedures.

Alexa Fluor is a trademark of Life Technologies Corporation. APO-BRDU and APO-DIRECT are trademarks of Phoenix Flow Systems. DRAQ7 is a trademark of BioStatus Ltd. Triton is a trademark of Dow Chemical Company.