Based on what is being retained or isolated, two types of selections are possible:
- Positive selection of cells
- Negative selection of cells
What is positive selection of cells and why is it important?
Positive selection selects the cells that need to be collected as the target population. The method uses magnetic particles with antibodies targeting a subpopulation of interest covalently bound to their surface. Once placed within the magnet, targeted cells migrate toward the magnet and are retained within the magnetic field while the unlabeled cells are drawn off and discarded. The targeted cells can then be collected and used in the desired application after removal from the magnetic field.
Positive cell selections yield excellent results with respect to purity, recovery, and viability of selected cells. However, depending on the cell type being selected and the surface antigen being targeted by the particle, positive selections can result in cells becoming activated or otherwise functionally altered. Even though the probability of activation is low, this magnetic particle-induced activation may be an issue if you specifically require purified yet unstimulated cells. In that case, you should consider negative selection for your cell separations.
What is negative selection of cells and why is it important?
Negative selection magnetically isolates cells that are not needed, while the target population of cells can be aspirated and collected prior to downstream application, such as cell sorting.
Enrichment by depletion or negative selection is used for research applications that require a cell population with high levels of purity and no antibody or particles bound to their surface.
In this procedure, all unwanted cells are first labeled with a cocktail containing monoclonal antibodies against antigens expressed by them. After washing away unbound antibody, a second-step reagent is used to magnetically label these cells. The labeled cells migrate to the magnet leaving in suspension a pure and untouched subpopulation of cells to be collected. A large percentage (>95%) of unwanted cell populations can be removed through negative selection.1
Enrichment using negative selection is recommended for downstream single-cell multiomic analysis. Such pre-enrichment helps in minimizing manipulation of cells.