Skip to main content Skip to navigation
PE Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158)
PE Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158)
Two-color flow cytometric analysis of KIR2DL1/S1/S3/S5 (CD158) expression on peripheral blood leucocyte populations. Whole blood was stained with BD Horizon™ PE-CF594 Mouse Anti-Human CD56 antibody (Cat. No. 564963) and either PE Mouse IgG2b, κ Isotype Control (Cat. No. 555058; Left Plots) or PE Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158) (Cat. No. 567158/567159; Right Plots). Erythrocytes were lysed with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899). The bivariate pseudocolor density plots showing the corelated expression of KIR2DL1/S1/S3/S5 (CD158) [or Ig isotype control staining] versus side light scatter signals for leucocyte populations [Upper Plots] or CD56 for lymphocytes [Lower Plots] were derived from gated events with the forward and side-light scatter characteristics of viable leucocytes or lymphocytes. Flow cytometry and data analysis were performed using a BD LSRFortessa™ X-20 Cell Analyzer System and FlowJo™ software.
Two-color flow cytometric analysis of KIR2DL1/S1/S3/S5 (CD158) expression on peripheral blood leucocyte populations. Whole blood was stained with BD Horizon™ PE-CF594 Mouse Anti-Human CD56 antibody (Cat. No. 564963) and either PE Mouse IgG2b, κ Isotype Control (Cat. No. 555058; Left Plots) or PE Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158) (Cat. No. 567158/567159; Right Plots). Erythrocytes were lysed with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899). The bivariate pseudocolor density plots showing the corelated expression of KIR2DL1/S1/S3/S5 (CD158) [or Ig isotype control staining] versus side light scatter signals for leucocyte populations [Upper Plots] or CD56 for lymphocytes [Lower Plots] were derived from gated events with the forward and side-light scatter characteristics of viable leucocytes or lymphocytes. Flow cytometry and data analysis were performed using a BD LSRFortessa™ X-20 Cell Analyzer System and FlowJo™ software.
Product Details
Down Arrow Up Arrow


BD Pharmingen™
KIR2DL1 (CD158a/NKAT-1); KIR2DS1 (CD158h); KIR2DS3 (NKAT-7); KIR2DS5 (CD158g/NKAT-9)
Human (QC Testing)
Mouse BALB/c IgG2b, κ
Human NK Clone LB2
Flow cytometry (Routinely Tested)
5 µl
Aqueous buffered solution containing BSA and ≤0.09% sodium azide.
RUO


Preparation And Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated with R-PE under optimum conditions, and unconjugated antibody and free PE were removed.

Product Notices

  1. This reagent has been pre-diluted for use at the recommended Volume per Test. We typically use 1 × 10^6 cells in a 100-µl experimental sample (a test).
  2. An isotype control should be used at the same concentration as the antibody of interest.
  3. Source of all serum proteins is from USDA inspected abattoirs located in the United States.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  5. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  6. Please refer to http://regdocs.bd.com to access safety data sheets (SDS).
  7. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
567159 Rev. 1
Antibody Details
Down Arrow Up Arrow
HP-MA4

The HP-MA4 monoclonal antibody specifically recognizes several Killer Cell Immunoglobulin-like Receptors (KIRs) which are also known as CD158 molecules. HP-MA4 recognizes Killer cell immunoglobulin-like receptor 2DL1 (encoded by KIR2DL1; aka, CD158a and NKAT-1), Killer cell immunoglobulin-like receptor 2DS1 (KIR2DS1; CD158h), Killer cell immunoglobulin-like receptor 2DS3 (KIR2DS3; NKAT-7), and Killer cell immunoglobulin-like receptor 2DS5 (KIR2DS5; CD158g, NKAT-9) which are collectively known as KIR2DL1/S1/S3/S5 (CD158). These type I transmembrane glycoproteins are encoded by polymorphic genes and have 2 extracellular Ig-like domains (KIR2D, domains D1 and D2) followed by a transmembrane region and either long (L) or short (S) cytoplasmic domains. Various CD158 molecules are differentially expressed by CD56dim natural killer (NK) cells and some T cells and can regulate their cytotoxic effector functions. Although different KIR gene content varies amongst haplotypes for individuals, certain "framework" genes including KIR3DL3, KIR3DP1, KIR3DL4, and KIR3DL2, are found in all haplotypes. KIR2DL1 has a long cytoplasmic domain with two tyrosine-based inhibitory motifs (ITIM) that enables inhibitory signal transduction by ligand-bound KIR2DL1 leading to reduced cytotoxic effector cell activity. KIR2DS1, KIR2DS3, KIR2DS5 (KIR2DS1/S3/S5) proteins each have a short cytoplasmic tail with a positively charged amino acid in their transmembrane region which allows association with the DAP12 transmembrane protein. DAP12 acts as an activating signal transduction element through its immunoreceptor tyrosine-based activation motifs (ITAMs) in its cytoplasmic domain leading to upregulated cytotoxic effector cell function. Some MHC class I molecules can serve as ligands for CD158 molecules, with HLA-C ligands reported for KIR2DL1, KIR2DS1, and KIR2DS5.

567159 Rev. 1
Format Details
Down Arrow Up Arrow
PE
R-Phycoerythrin (PE), is part of the BD family of Phycobiliprotein dyes. This fluorochrome is a multimeric fluorescent phycobiliprotein with excitation maximum (Ex Max) of 496 nm and 566 nm and an emission maximum (Em Max) at 576 nm. PE is designed to be excited by the Blue (488 nm), Green (532 nm) and Yellow-Green (561 nm) lasers and detected using an optical filter centered near 575 nm (e.g., a 575/26-nm bandpass filter). As PE is excited by multiple lasers, this can result in cross-laser excitation and fluorescence spillover on instruments with various combinations of Blue, Green, and Yellow-Green lasers. Please ensure that your instrument’s configurations (lasers and optical filters) are appropriate for this dye.
altImg
PE
Yellow-Green 488 nm, 532 nm, 561 nm
496 nm, 566 nm
576 nm
567159 Rev.1
Citations & References
Down Arrow Up Arrow
View product citations for antibody "567159" on CiteAb

Development References (7)

  1. Beziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunol. 2017; 150(3):248-264. (Clone-specific: Flow cytometry). View Reference
  2. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunol. 2011; 132(3):315-325. (Biology). View Reference
  3. De Miguel M, López-Botet M. Characterization of monoclonal antibodies specific for receptors of the KIR family. Inmunologia. 2002; 21(4):187-193. (Immunogen: Flow cytometry, Functional assay, Immunoprecipitation, Inhibition). View Reference
  4. Döhring C, Samaridis J, Colonna M. Alternatively spliced forms of human killer inhibitory receptors.. Immunogenetics. 1996; 44(3):227-30. (Clone-specific: Flow cytometry, Immunoprecipitation). View Reference
  5. Estefanía E, Flores R, Gómez-Lozano N, Aguilar H, López-Botet M, Vilches C. Human KIR2DL5 is an inhibitory receptor expressed on the surface of NK and T lymphocyte subsets.. J Immunol. 2007; 178(7):4402-10. (Clone-specific: Flow cytometry, Immunoprecipitation). View Reference
  6. Middleton D, Gonzelez F. The extensive polymorphism of KIR genes. Immunol. 2010; 129(1):8-19. (Biology). View Reference
  7. Pende D, Falco M, Vitale M, et al. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Front Immunol. 2019; 10:1179. (Clone-specific: Flow cytometry). View Reference
View All (7) View Less
567159 Rev. 1

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.