-
Your selected country is
Luxembourg
- Change country/language
Old Browser
This page has been recently translated and is available in French now.
Looks like you're visiting us from {countryName}.
Would you like to stay on the current country site or be switched to your country?
BD Multitest™ Anti-Human CD45RA FITC/CD62L PE/CD3 PerCP/CD4 APC
(RUO (GMP))
Regulatory Status Legend
Any use of products other than the permitted use without the express written authorization of Becton, Dickinson and Company is strictly prohibited.
Description
CD45RA, clone L48, is derived from hybridization of mouse Sp2/0 myeloma cells with spleen cells from BALB/c mice immunized with low-buoyant–density human lymphocytes. CD62L, clone SK11, is derived from hybridization of mouse NS-1 myeloma cells with spleen cells from BALB/c mice immunized with peripheral blood T lymphocytes. CD3, clone SK7, is derived from hybridization of mouse NS-1 myeloma cells with spleen cells from BALB/c mice immunized with human thymocytes. CD4, clone SK3, is derived from hybridization of mouse NS-1 myeloma cells with spleen cells from BALB/c mice immunized with human peripheral blood T lymphocytes. CD45RA recognizes an Mr 220-kilodalton (kd) isoform of the leucocyte common antigen (LCA). The CD45RA antigen is a member of the CD45 antigen family that also includes the CD45, CD45RB, and CD45RO antigens. The CD62L antigen, Mr 80 kd, is the leucocyte endothelial cellular adhesion molecule (LECAM). The CD62L antigen belongs to the selectin family of cell adhesion molecules. The CD62L molecule is the human homologue of the murine lymph node homing receptor, MEL 14. CD3 recognizes the epsilon chain of the CD3 antigen/T-cell antigen receptor (TCR) complex. This complex is composed of at least six proteins that range in molecular weight from 20–30 kd. The antigen recognized by the CD3 antibody is noncovalently associated with either α/β or γ/δ TCR (70–90 kd). CD4 recognizes an antigen that interacts with class II molecules of the major histocompatibility complex (MHC) and is the primary receptor for the human immunodeficiency virus.The cytoplasmic portion of the antigen is associated with the protein tyrosine kinase p56lck. The CD4 antigen can regulate the function of the CD3 antigen/TCR complex. CD4 also reacts with monocytes/macrophages that have an antigen density lower than that on helper/inducer T lymphocytes.
Preparation And Storage
The MultiTEST™ reagent is supplied as a combination of CD45RA FITC, CD62L PE, CD3 PerCP, and CD4 APC in 1.0 mL of phosphate-buffered saline (PBS) containing bovine serum albumin and 0.1% sodium azide. Store vials at 2–8°C. Do not freeze; protect from prolonged exposure to light. Each reagent is stable for the period shown on the bottle label when stored as directed.
Description | Clone | Isotype | EntrezGene ID |
---|---|---|---|
CD45RA FITC | L48 | IgG1, κ | N/A |
CD3 PerCP | SK7 | IgG1, κ | N/A |
CD62L PE | SK11 | IgG2a, κ | 6402 |
CD4 APC | SK3 | IgG1, κ | N/A |
Development References (35)
-
Bernard A, Boumsell L, Hill C. Joint report of the first international workshop on human leucocyte differentiation antigens by the investigators of the participating laboratories. In: Bernard A, Boumsell L, Dausset J, Milstein C, Schlossman SF, ed. Leucocyte Typing. New York, NY: Springer-Verlag; 1984:9-108.
-
Bevilacqua M, Butcher E, Furie B, et al. Selectins: a family of adhesion receptors. Cell. 1991; 67:233. (Biology).
-
Brenner M, Groh V, Porcelli A, et al. Knapp W, Dörken B, Gilks W, et al, ed. Leucocyte Typing IV: White Cell Differentiation Antigens. 1989:1049-1053.
-
Camerini D, James SP, Stamenkovic I, Seed B. Leu-8/TQ1 is the human equivalent of the Mel-14 lymph node homing receptor. Nature. 1989; 342(6245):78-82. (Biology). View Reference
-
Clevers H, Alarcón B, Wileman T, Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annual Rev Immunol. 1988; 6:629. (Biology).
-
Cobbold SP, Hale G, Waldmann H. Non-lineage, LFA-1 family, and leucocyte common antigens: new and previously defined clusters. In: McMichael AJ. A.J. McMichael .. et al., ed. Leucocyte typing III : white cell differentiation antigens. Oxford New York: Oxford University Press; 1987:788-803.
-
Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus.. Nature. 312(5996):763-7. (Biology). View Reference
-
Diacovo T, Springer TA. CD62L (L-selectin) cluster report. In: Schlossman SF. Stuart F. Schlossman .. et al., ed. Leucocyte typing V : white cell differentiation antigens : proceedings of the fifth international workshop and conference held in Boston, USA, 3-7 November, 1993. Oxford: Oxford University Press; 1995:1503-1504.
-
Evans RL, Wall DW, Platsoucas CD, et al. Thymus-dependent membrane antigens in man: inhibition of cell-mediated lympholysis by monoclonal antibodies to TH2 antigen. Proc Natl Acad Sci U S A. 1981; 78(1):544-548. (Biology). View Reference
-
Garson JA, Beverley PCL, Coakham HB, Harper EJ. Monoclonal antibodies against human T lymphocytes label Purkinje neurones of many species. Nature. 1982; 298:375-377. (Biology).
-
Gatenby PA, Kansas GS, Xian CY, Evans RL, Engleman EG. Dissection of immunoregulatory subpopulations of T lymphocytes within the helper and suppressor sublineages in man. J Immunol. 1982; 129(5):1997-2000. (Biology). View Reference
-
Haynes BF. Summary of T-cell studies performed during the Second International Workshop and Conference on Human Leukocyte Differentiation Antigens. In: Reinherz EL. Ellis L. Reinherz .. et al., ed. Leukocyte typing II. New York: Springer-Verlag; 1986:3-30.
-
Kan EAR, Wang CY, Wang LC, Evans RL. Noncovalently bonded subunits of 22 and 28 kd are rapidly internalized by T cells reacted with Anti–Leu-4 antibody. J Immunol. 1983; 131:536-539. (Biology).
-
Kanof ME, James SP. Leu-8 antigen expression is diminished during cell activation but does not correlate with effector function of activated T lymphocytes. J Immunol. 1988; 140:3701-3706. (Biology).
-
Kanof ME, Strober W, James SP. Induction of CD4 suppressor T cells with anti-Leu-8 antibody. J Immunol. 1987; 139(1):49-54. (Biology). View Reference
-
Kansas GS, Wood GS, Engleman EG. Maturational and functional diversity of human B lymphocytes delineated with Anti-Leu-8. J Immunol. 1985; 134:3003-3006. (Biology).
-
Kansas GS, Wood GS, Fishwild DM, Engleman EG. Functional characterization of human T lymphocyte subsets distinguished by monoclonal anti-leu-8. J Immunol. 1985; 134(5):2995-3002. (Biology). View Reference
-
Knowles RW. Immunochemical analysis of the T-cell–specific antigens. In: Reinherz EL. Ellis L. Reinherz .. et al., ed. Leukocyte typing II. New York: Springer-Verlag; 1986:259-288.
-
Kurrle R. Knapp W, ed. Leucocyte Typing IV. New York, NY: Oxford University Press; 1989:290-293.
-
Lanier LL, Allison JP, Phillips JH. Correlation of cell surface antigen expression on human thymocytes by multi-color flow cytometric analysis: implications for differentiation. J Immunol. 1986; 137(8):2501-2507. (Biology). View Reference
-
Lanier LL, Engleman EG, Gatenby P, Babcock GF, Warner NL, Herzenberg LA. Correlation of functional properties of human lymphoid cell subsets and surface marker phenotypes using multiparameter analysis and flow cytometry. Immun Rev. 1983; 74:143. (Biology).
-
Lanier LL, Loken MR. Human lymphocyte subpopulations identified by using three-color immunofluorescence and flow cytometry analysis: correlation of Leu-2, Leu-3, Leu-7, Leu-8, and Leu-11 cell surface antigen expression. J Immunol. 1984; 132:151. (Biology).
-
Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain.. Cell. 1986; 47(3):333-48. (Biology). View Reference
-
Michie SA, Garcia CF, Strickler JG, Dailey MO, Rouse RV, Warnke RA. Expression of the Leu-8 antigen by B-cell lymphomas. Am J Clin Pathol. 1987; 88(4):486-490. (Biology). View Reference
-
Morimoto C, Letvin NL, Distaso JA, Aldrich WR, Schlossman SF. The isolation and characterization of the human suppressor/inducer T-cell subset. J Immunol. 1985; 134:1508-1515. (Biology).
-
Reichert T, DeBruyere M, Deneys V, et al. Lymphocyte subset reference ranges in adult Caucasians. Clin Immunol Immunopathol. 1991; 60(2):190-208. (Biology). View Reference
-
Roederer M, Bigos M, Nozaki T, Stovel RT, Parks DR, Herzenberg LA. Heterogeneous calcium flux in peripheral T cell subsets revealed by five-color flow cytometry using log-ratio circuitry.. Cytometry. 1995; 21(2):187-96. (Biology). View Reference
-
Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA, Herzenberg LA. CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest. 1995; 95:2061-2066. (Biology).
-
Rose LM, Ginsberg AH, Rothstein TL, Ledbetter JA, Clark EA. Selective loss of a subset of T helper cells in active multiple sclerosis.. Proc Natl Acad Sci USA. 1985; 82(21):7389-93. (Biology). View Reference
-
Rudd CE, Burgess KE, Barber EK, Schlossman SF. Knapp W, Dörken B, Gilks WR, et al, ed. Leucocyte Typing IV: White Cell Differentiation Antigens. New York, NY: Oxford University Press; 1989:326-327.
-
Serra HM, Krowka JF, Ledbetter JA, Pilarski LM. Loss of CD45R (Lp220) represents a post-thymic T cell differentiation event.. J Immunol. 1988; 140(5):1435-41. (Biology). View Reference
-
Sobel RA, Hafler DA, Castro EE, Morimoto C, Weiner HL. The 2H4 (CD45R) antigen is selectively decreased in multiple sclerosis lesions.. J Immunol. 1988; 140(7):2210-4. (Biology). View Reference
-
Watanabe N, De Rosa SC, Cmelak A, et al. Long-term depletion of naive T cells in patients treated for Hodgkin's disease. Blood. 1997; 90:3662-3672. (Biology).
-
Wood GS, Warner NL, Warnke RA. Anti–Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J Immunol. 1983; 131(1):212-216. (Biology). View Reference
-
van Dongen JJM, Krissansen GW, Wolvers-Tettero ILM, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood. 1988; 71:603-612. (Biology).
Please refer to Support Documents for Quality Certificates
Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described
Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims. Comparisons are not made against non-BD technologies, unless otherwise noted.
For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Although not required, these products are manufactured in accordance with Good Manufacturing Practices.