Skip to main content Skip to navigation
RY775 Mouse Anti-Human CD25 (IL-2 Receptor α)
RY775 Mouse Anti-Human CD25 (IL-2 Receptor α)

Two-color flow cytometric analysis for CD25 (IL-2 Receptor α) on unstimulated Human peripheral blood lymphocytes.  Human whole blood was stained with APC Mouse Anti-Human CD4 antibody (Cat. No. 555349/561840) and with either BD Horizon™ RY775 Mouse IgG1, κ Isotype Control (Cat. No. 571408; Left Plot) or BD Horizon™ RY775 Mouse Anti-Human CD25 (IL-2 Receptor α) antibody (Cat. No. 571388/571389; Right Plot). The bivariate pseudocolor density plot showing the correlated expression of CD25 (IL-2 Receptor α) [or Ig Isotype control staining] versus CD4 was derived from gated events with the forward and side light-scatter characteristics of viable lymphocytes. Flow cytometry and data analysis were performed using a BD FACSymphony™ A5 SE Flow Cytometer System and FlowJo™ Software.

RY775 Mouse Anti-Human CD25 (IL-2 Receptor α)

Flow cytometric analysis for CD25 (IL-2 Receptor α) on stimulated Human peripheral blood mononuclear cells.  Human peripheral blood mononuclear cells (PBMC) were stimulated for 3 days with Phytohemagglutinin. The cells were then stained with either BD Horizon™ RY775 Mouse IgG1, κ Isotype Control (Cat. No. 571408; dashed line histogram) or BD Horizon™ RY775 Mouse Anti-Human CD25 (IL-2 Receptor α) antibody (Cat. No. 571388/571389; solid line histogram). The fluorescence histogram showing CD25 (IL-2 Receptor α) expression (or Ig Isotype control staining) was derived from gated events with the forward and side light-scatter characteristics of viable lymphoblasts.  Flow cytometry and data analysis were performed using a BD FACSymphony™ A5 SE Flow Cytometer System and FlowJo™ Software.

Two-color flow cytometric analysis for CD25 (IL-2 Receptor α) on unstimulated Human peripheral blood lymphocytes.  Human whole blood was stained with APC Mouse Anti-Human CD4 antibody (Cat. No. 555349/561840) and with either BD Horizon™ RY775 Mouse IgG1, κ Isotype Control (Cat. No. 571408; Left Plot) or BD Horizon™ RY775 Mouse Anti-Human CD25 (IL-2 Receptor α) antibody (Cat. No. 571388/571389; Right Plot). The bivariate pseudocolor density plot showing the correlated expression of CD25 (IL-2 Receptor α) [or Ig Isotype control staining] versus CD4 was derived from gated events with the forward and side light-scatter characteristics of viable lymphocytes. Flow cytometry and data analysis were performed using a BD FACSymphony™ A5 SE Flow Cytometer System and FlowJo™ Software.

Flow cytometric analysis for CD25 (IL-2 Receptor α) on stimulated Human peripheral blood mononuclear cells.  Human peripheral blood mononuclear cells (PBMC) were stimulated for 3 days with Phytohemagglutinin. The cells were then stained with either BD Horizon™ RY775 Mouse IgG1, κ Isotype Control (Cat. No. 571408; dashed line histogram) or BD Horizon™ RY775 Mouse Anti-Human CD25 (IL-2 Receptor α) antibody (Cat. No. 571388/571389; solid line histogram). The fluorescence histogram showing CD25 (IL-2 Receptor α) expression (or Ig Isotype control staining) was derived from gated events with the forward and side light-scatter characteristics of viable lymphoblasts.  Flow cytometry and data analysis were performed using a BD FACSymphony™ A5 SE Flow Cytometer System and FlowJo™ Software.

製品詳細
Down Arrow Up Arrow


BD Horizon™
IL-2R; IL2RA; IL-2Rα; TCGFR; TAC antigen; p55
Human (QC Testing)
Mouse BALB/c IgG1, κ
Human Phytohemagglutinin-activated T Cells
Flow cytometry (Routinely Tested)
5 µl/test
III A769,T153; IV A8
3559
AB_3686468
Aqueous buffered solution containing ≤0.09% sodium azide.
RUO


Preparation and Storage

The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated to the dye under optimum conditions and unconjugated antibody and free dye were removed. Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze.

推奨アッセイ手順

BD® CompBeads can be used as surrogates to assess fluorescence spillover (compensation). When fluorochrome conjugated antibodies are bound to BD® CompBeads, they have spectral properties very similar to cells. However, for some fluorochromes there can be small differences in spectral emissions compared to cells, resulting in spillover values that differ when compared to biological controls. It is strongly recommended that when using a reagent for the first time, users compare the spillover on cells and BD® CompBeads to ensure that BD® CompBeads are appropriate for your specific cellular application.

Product Notices

  1. When using high concentrations of antibody, background binding of this dye to erythroid fragments produced by ammonium chloride-based lysis, such as with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899), has been observed when the antibody conjugate was present during the lysis procedure. This may cause nonspecific staining of target cells, such as leukocytes, which have bound the resulting erythroid fragments. This background can be mitigated by any of the following: titrating the antibody conjugate to a lower concentration, fixing samples with formaldehyde, or removing erythrocytes before staining (eg, gradient centrifugation or pre-lysis with wash). This background has not been observed when cells were lysed with BD FACS™ Lysing Solution (Cat. No. 349202) after staining.
  2. This reagent has been pre-diluted for use at the recommended Volume per Test. We typically use 1 × 10^6 cells in a 100-µl experimental sample (a test).
  3. An isotype control should be used at the same concentration as the antibody of interest.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  5. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
  6. Please observe the following precautions: We recommend that special precautions be taken (such as wrapping vials, tubes, or racks in aluminum foil) to protect exposure of conjugated reagents, including cells stained with those reagents, to any room illumination. Absorption of visible light can significantly affect the emission spectra and quantum yield of tandem fluorochrome conjugates.
  7. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  8. Human donor specific background has been observed in relation to the presence of anti-polyethylene glycol (PEG) antibodies, developed as a result of certain vaccines containing PEG, including some COVID-19 vaccines. We recommend use of BD Horizon Brilliant™ Stain Buffer in your experiments to help mitigate potential background. For more information visit https://www.bdbiosciences.com/en-us/support/product-notices.
  9. Please refer to http://regdocs.bd.com to access safety data sheets (SDS).
  10. Tandem fluorochromes contain both an energy donor and an energy acceptor. Although every effort is made to minimize the lot-to-lot variation in the efficiency of the fluorochrome energy transfer, differences in the residual emission from the donor may be observed. Additionally, multi-laser cytometers may directly excite both the donor and acceptor fluorochromes. Therefore, we recommend for every tandem conjugate, a matched individual single-stain control be acquired for generating a compensation or spectral unmixing matrix.
  11. Cy is a trademark of Global Life Sciences Solutions Germany GmbH or an affiliate doing business as Cytiva.
  12. For U.S. patents that may apply, see bd.com/patents.
571389 Rev. 1
抗体の詳細
Down Arrow Up Arrow
2A3

The 2A3 monoclonal antibody specifically binds to human CD25, the low-affinity alpha subunit of the Interleukin-2 Receptor (IL- 2Rα). CD25 associates with CD122 (IL-2Rβ chain) and CD132 (common γ chain or γc) to form the high-affinity signal-transducing IL-2R complex. CD25 is expressed by subsets of thymocytes and peripheral blood lymphocytes including CD4+CD25+ regulatory T cells and memory T cells. CD25 antigen density increases on activated T cells including phytohemagglutinin (PHA)-, concanavalin A (Con A)-, and CD3-activated T lymphocytes. High levels of CD25 can be expressed by T lymphocytes from mixed lymphocyte cultures and by human T-lymphocyte leukemia virus (HTLV)-infected T-lymphocyte leukemia lines, for example, HUT-102. CD25 can also be expressed by activated B cells and macrophages. Recombinant IL-2 blocks the binding of the 2A3 antibody to PHA-activated T lymphocytes.

571389 Rev. 1
フォーマットの詳細
Down Arrow Up Arrow
RY775
The BD Horizon RealYellow™ 775 (RY775) Dye is part of the BD® family of yellow-green dyes. It is a tandem fluorochrome with an excitation maximum (Ex Max) at 557-nm and an emission maximum (Em Max) at 775-nm as measured using an antibody-dye conjugate. Driven by BD® innovation, RY775 can be used on both spectral and conventional cytometers and is designed to be excited by the Yellow-Green laser (561-nm) with minimal excitation by the 488-nm Blue laser. For conventional instruments equipped with a Yellow-Green laser (561-nm), RY775 can be used as an alternative to PE-Cy7 and we recommend using an optical filter centered near 780-nm (eg, a 780/60-nm bandpass filter).
altImg
RY775
Yellow-Green 561 nm
557 nm
775 nm
571389 Rev.1
引用&参考文献
Down Arrow Up Arrow
View product citations for antibody "571389" on CiteAb

Development References (10)

  1. Dower SK, Hefeneider SH, Alpert AR, Urdal DL. Quantitative measurement of human interleukin 2 receptor levels with intact and detergent-solubilized human T-cells. Mol Immunol. 1985; 22(8):937-947. (Clone-specific). View Reference
  2. Greene WC, Leonard WJ. The human interleukin-2 receptor. Annu Rev Immunol. 1986; 4:69-95. (Clone-specific). View Reference
  3. Jackson AL, Matsumoto H, Janszen M, Maino V, Blidy A, Shye S. Restricted expression of p55 interleukin 2 receptor (CD25) on normal T cells. Clin Immunol Immunopathol. 1990; 54(1):126-133. (Clone-specific: Flow cytometry). View Reference
  4. Lin G-X, Yang X, Hollemweguer E, et al. Cross-reactivity of CD antibodies in eight animal species. In: Mason D. David Mason .. et al., ed. Leucocyte typing VII : white cell differentiation antigens : proceedings of the Seventh International Workshop and Conference held in Harrogate, United Kingdom. Oxford: Oxford University Press; 2002:519-523.
  5. Neubert R, Foerster M, Nogueira AC, Helge H. Cross-reactivity of antihuman monoclonal antibodies with cell surface receptors in the common marmoset.. Life Sci. 1996; 58(4):317-24. (Clone-specific: Flow cytometry). View Reference
  6. Rambaldi A, Young DC, Herrmann F, Cannistra SA, Griffin JD. Interferon-gamma induces expression of the interleukin 2 receptor gene in human monocytes. Eur J Immunol. 1987; 17(1):153-156. (Clone-specific). View Reference
  7. Robb RJ, Greene WC, Rusk CM. Low and high affinity cellular receptors for interleukin 2. Implications for the level of Tac antigen. J Exp Med. 1984; 160(4):1126-1146. (Biology). View Reference
  8. Schwarting R, Stein H. Cluster report: CD25. In: Knapp W. W. Knapp .. et al., ed. Leucocyte typing IV : white cell differentiation antigens. Oxford New York: Oxford University Press; 1989:399-403.
  9. Sereti I, Martinez-Wilson H, Metcalf JA, et al. Long-term effects of intermittent interleukin 2 therapy in patients with HIV infection: characterization of a novel subset of CD4(+)/CD25(+) T cells. Blood. 2002; 100(6):2159-2167. (Clone-specific: Flow cytometry). View Reference
  10. Urdal DL, March CJ, Gillis S, Larsen A, Dower SK. Purification and chemical characterization of the receptor for interleukin 2 from activated human T lymphocytes and from a human T-cell lymphoma cell line. Proc Natl Acad Sci U S A. 1984; 81(20):6481-6485. (Immunogen: Blocking, Dot Blot, Immunoaffinity chromatography, Inhibition, Radioimmunoassay). View Reference
すべて表示する (10) 表示項目を減らす
571389 Rev. 1

Please refer to Support Documents for Quality Certificates

 

Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described

 

Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.