Skip to main content Skip to navigation
Purified Mouse Anti-Human HLA-ABC
Purified Mouse Anti-Human HLA-ABC
Multiparameter flow cytometric analysis of HLA-ABC expression on Human peripheral blood leukocyte populations. Human whole blood was stained with either Purified Mouse IgG2a, κ Isotype Control (Cat. No. 553454; Left Plot) or Purified Mouse Anti-Human HLA-ABC antibody (Cat. No. 571698; Right Plot). The cells were washed and then secondarily stained with PE Goat Anti-Mouse Ig (Multiple Adsorption) [Cat. No. 550589]. Erythrocytes were lysed with BD FACS Lysing Solution (Cat. No. 349202). The bivariate pseudocolor density plot showing the correlated expression of HLA-ABC (or Ig Isotype control staining) versus side-light scatter (SSC-A) signals was derived from gated events with the forward and side-light scatter characteristics of intact leukocyte populations. Flow cytometry and data analysis were performed using a BD FACSCelesta™ Flow Cytometer System and FlowJo™ Software.
Multiparameter flow cytometric analysis of HLA-ABC expression on Human peripheral blood leukocyte populations. Human whole blood was stained with either Purified Mouse IgG2a, κ Isotype Control (Cat. No. 553454; Left Plot) or Purified Mouse Anti-Human HLA-ABC antibody (Cat. No. 571698; Right Plot). The cells were washed and then secondarily stained with PE Goat Anti-Mouse Ig (Multiple Adsorption) [Cat. No. 550589]. Erythrocytes were lysed with BD FACS Lysing Solution (Cat. No. 349202). The bivariate pseudocolor density plot showing the correlated expression of HLA-ABC (or Ig Isotype control staining) versus side-light scatter (SSC-A) signals was derived from gated events with the forward and side-light scatter characteristics of intact leukocyte populations. Flow cytometry and data analysis were performed using a BD FACSCelesta™ Flow Cytometer System and FlowJo™ Software.
Product Details
Down Arrow Up Arrow


BD Pharmingen™
HLA class I; HLA class I A,B,C; HLA-A, HLA-B, HLA-C; HLA-A,B,C; MHC class I; MHC-I
Human (QC Testing)
Mouse BALB/c IgG2a, κ
Human Tonsil Leucocyte Membranes
Flow cytometry (Routinely Tested)
0.5 mg/ml
3105, 3106, 3107
Aqueous buffered solution containing ≤0.09% sodium azide.
RUO


Preparation And Storage

Store undiluted at 4°C. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography.

Product Notices

  1. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
  2. Please refer to http://regdocs.bd.com to access safety data sheets (SDS).
  3. For U.S. patents that may apply, see bd.com/patents.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  5. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
  6. An isotype control should be used at the same concentration as the antibody of interest.
  7. Sodium azide is a reversible inhibitor of oxidative metabolism; therefore, antibody preparations containing this preservative agent must not be used in cell cultures nor injected into animals. Sodium azide may be removed by washing stained cells or plate-bound antibody or dialyzing soluble antibody in sodium azide-free buffer. Since endotoxin may also affect the results of functional studies, we recommend the NA/LE (No Azide/Low Endotoxin) antibody format, if available, for in vitro and in vivo use.
571698 Rev. 1
Antibody Details
Down Arrow Up Arrow
W6/32

The W6/32 monoclonal antibody recognizes a monomorphic epitope expressed on native β2 microglobulin (β2m)-associated Major Histocompatibility Complex (MHC) class I molecules: Human Leucocyte Antigen (HLA)-A, HLA-B, and HLA-C (HLA-ABC). HLA class I molecules are heterodimers comprised of an ~40-45 kDa, highly polymorphic transmembrane α heavy chain, a type I glycoprotein that is noncovalently-associated with an invariant β2-microglobulin (β2m) light chain. The N-terminal extracellular region of the HLA class I heavy chain is comprised of three domains (α1, α2, and α3). The α1 and α2 domains form a closed antigen-binding groove that accommodates 8-10 aa-peptide antigens. β2m non-covalently associates with the α3 heavy chain domain and promotes HLA class I stability. The W6/32 antibody recognizes a conformational epitope on the HLA class I heavy chain. HLA Class I antigens are normally expressed on most nucleated cells. Their expression is upregulated on activated cells or cells responding to various agents including proinflammatory cytokines or mediators. Reduced HLA Class I expression is found on certain virus-infected or tumor cells. HLA class I antigens expressed on thymic epithelial cells are involved in the positive and negative selection of CD8+ T cell precursors which determines their TCR repertoire during T cell maturation. In the periphery, these HLA Class I antigens serve to either present endogenous antigens or cross-present exogenous antigens for the generation of effector and memory CD8+ T cell responses. Target cell HLA Class I antigens can serve as ligands for inhibitory receptors expressed on NK cells and CD8+ T cells and suppress their cytotoxic responses. Human HLA class I molecules play critical roles in cell-mediated immune responses and tumor surveillance as well as tolerance to self-antigens.

571698 Rev. 1
Format Details
Down Arrow Up Arrow
Purified
Tissue culture supernatant is purified by either protein A/G or affinity purification methods. Both methods yield antibody in solution that is free of most other soluble proteins, lipids, etc. This format provides pure antibody that is suitable for a number of downstream applications including: secondary labeling for flow cytometry or microscopy, ELISA, Western blot, etc.
Purified
571698 Rev.1
Citations & References
Down Arrow Up Arrow
View product citations for antibody "571698" on CiteAb

Development References (6)

  1. Barnstable CJ, Bodmer WF, Brown G, et al. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis.. Cell. 1978; 14(1):9-20. (Immunogen: Cytotoxicity, Immunoprecipitation, Radioimmunoassay). View Reference
  2. Margulies DH, Natarajan K, Rossjohn J, McCluskey J. Major Histocompatibility Complex and Its Proteins. In: Paul WE. Paul WE, ed. Fundamental Immunology 7th Edition. Philadelphia: Lippincott Williams & Wilkins; 2013:487-523.
  3. Parham P, Barnstable CJ, Bodmer WF. Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C, antigens.. J Immunol. 1979; 123(1):342-9. (Clone-specific: Immunoaffinity chromatography, Immunoprecipitation, Radioimmunoassay). View Reference
  4. Serrano A, Tanzarella S, Lionello I, et al. Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2'-deoxycytidine treatment.. Int J Cancer. 2001; 94(2):243-51. (Clone-specific: Flow cytometry). View Reference
  5. Shields MJ, Ribaudo RK. Mapping of the monoclonal antibody W6/32: sensitivity to the amino terminus of beta2-microglobulin.. Tissue Antigens. 1998; 51(5):567-70. (Clone-specific: Flow cytometry). View Reference
  6. Wooden SL, Kalb SR, Cotter RJ, Soloski MJ. Cutting edge: HLA-E binds a peptide derived from the ATP-binding cassette transporter multidrug resistance-associated protein 7 and inhibits NK cell-mediated lysis.. J Immunol. 2005; 175(3):1383-7. (Clone-specific: Flow cytometry, Functional assay, Inhibition). View Reference
View All (6) View Less
571698 Rev. 1

Please refer to Support Documents for Quality Certificates

 

Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described

 

Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.