Skip to main content Skip to navigation
Scientist examining test tube in a laboratory.

 

For Professionals in Clinical Diagnostics

 

Blood cancer constitutes a variety of hematologic malignancies involving white blood cells (WBCs), red blood cells (RBCs) and platelets. With advances in genetic and molecular technologies and the ability to characterize various types of immunological markers, our understanding of blood cancers has undergone tremendous progress.

 

What causes blood cancers?

 

Most blood cancers involve disruptions of the hematopoietic and immune systems. During the transformation of normal cells into cancerous cells (oncogenic process), both the common myeloid and common lymphoid progenitor populations arising from hematopoietic stem cells (HSCs) undergo uncontrolled proliferation. Based on the population affected, different types of blood cancers have been identified.

The three major types of blood cancers

 

Leukaemialymphoma (Hodgkin and non-Hodgkin) and myeloma are the three major categories of blood cancer, but based on their phenotypes, several other subcategories have been identified.

 

Leukaemia

Leukaemia arises due to an overproduction of WBCs. Based on the starting cell in the bone marrow, leukaemia can be lymphocytic or myeloid. Lymphocytic leukaemia arises from lymphocyte progenitors whereas non-lymphocytic or myeloid leukaemia arises from progenitors of erythrocytes, granulocytes, monocytes or platelets. Based on the maturation of leukaemic cells, leukaemia is categorized into two types: acute or chronic.1,2 The prevalence of the disease varies based on age, stage and the type of leukaemia (myeloid vs lymphoid).

 

Lymphoma

Lymphoma arises due to the malignant transformation of lymphocytes. Most lymphomas originate from B cells with only 10–15% being of T and NK cell origin.2 More than 70 types of lymphomas have been described and they are grouped in two main categories: Hodgkin and non-Hodgkin lymphoma.

 

Hodgkin lymphoma

Hodgkin lymphoma (HL) is mostly of B-cell origin. It preferentially develops in young adults between 20 and 34 years old. Hodgkin Reed-Sternberg (HRS) cells are a hallmark of Hodgkin lymphoma. They are giant multinucleated abnormal cells constituting the clonal tumor pool of Hodgkin lymphoma. CD30 is the hallmark of HL and HRS cell surface markers.3,4

 

Non-Hodgkin Lymphoma (NHL)

Non-Hodgkin lymphoma (NHL) is one of the most common forms of lymphoma.5 Surface markers such as CD20, CD30 and CD19 are expressed in NHL that are derived from B-lymphocytes.

 

Myeloma

Myeloma is the result of transformation of plasma cells either due to changes in the bone marrow microenvironment or genetic alterations in plasma cells. Because the tumors develop in multiple locations in the bone marrow and periphery, the disease is also called multiple myeloma.

 

BD Biosciences clinical flow cytometry solutions, including instrumentation, software and reagents, such as our Analyte Specific Reagents range offer the building blocks for laboratory-developed tests used in the identification of markers associated with blood cell disorders*. 

 

Complementing our product solutions, BD support teams are available to help your laboratory maximize productive bench time and increase staff efficiency.

Flow cytometry–based assays for blood cancers

Blood cancer differential diagnosis can be obtained by detecting signature profiles of altered immune cells associated with different types of blood cancers. Flow cytometry immunophenotyping is usually the next diagnostic step after a complete blood count (CBC). A WBC differential indicates abnormalities in peripheral blood cell counts, including increased or decreased number of lymphocytes, morphological abnormalities, or the presence of myeloid or immature blood cells. Flow cytometry allows many liquid biopsies (blood, CSF) and tissue homogenates (e.g., bone marrow, lymph nodes) to be screened in a timely manner to concurrently evaluate an array of phenotypic and functional markers.

 

BD Biosciencoffers a large portfolio of single-color antibody CE-IVD reagents that span across a range of specificities and dyes that can help in the characterization of hematologic neoplasia.  These panels are to be verified and validated by the lab.

 

Furthermore, we provide the BD OneFlow™ Solution, comprising a comprehensive set of reagents, setup beads, protocols and assay templates, to help standardize leukaemia and lymphoma immunophenotyping. This can improve laboratory efficiency and enable reliability and accuracy of results.8,9

References

 

  1. Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci. 2018;75(3):417-446. doi:10.1007/s00018-017-2620-z
  2.  

  3. van Dongen JJ, Lhermitte L, Böttcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukaemia. 2012;26(9):1908-1975. doi:10.1038/leu.2012.120
  4.  

  5. Jiang M, Bennani MN, Feldman AL. Lymphoma classification update: T-cell lymphomas, Hodgkin lymphomas and histiocytic/dendritic cell neoplasms. Expert Rev Hematol. 2017;10(3):239-249. doi: 10.1080/17474086.2017.1281122
  6.  

  7. Küppers R, Hansmann ML. The Hodgkin and Reed/Sternberg cell. Int J Biochem Cell Biol. 2005;37(3):511-517. doi:10.1016/j.biocel.2003.10.025
  8.  

  9. Kanzler H, Küppers R, Helmes S, et al. Hodgkin and Reed-Sternberg-like cells in B-cell chronic lymphocytic leukaemia represent the outgrowth of single germinal-center B-cell-derived clones: potential precursors of Hodgkin and Reed-Sternberg cells in Hodgkin's disease. Blood. 2000;95(3):1023-1031.
  10.  

  11. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-2390. doi:10.1182/blood-2016-01-643569
  12.  

  13. Sarkozy C, Baseggio L, Feugier P, et al. Peripheral blood involvement in patients with follicular lymphoma: a rare disease manifestation associated with poor prognosis. Br J Haematol. 2014;164(5):659-667. doi:10.1111/bjh.12675
  14.  

  15. van der Velden VHJ, Flores-Montero J, Perez-Andres M, et al. Optimization and testing of dried antibody tube: The EuroFlow LST and PIDOT tubes as examples. J Immunol Methods. 2019;475:112287. doi: 10.1016/j.jim.2017.03.011
  16.  

  17. Moloney E, Watson H, Barge D, et al. Efficiency and health economic evaluations of BD OneFlow™ Flow Cytometry Reagents for diagnosing chronic lymphoid leukaemia. Cytometry B Clin Cytom. 2019;96(6):514-520. doi: 10.1002/cyto.b.21779
  18.  

*BD Biosciences clinical flow cytometry solutions, including instrumentation, software and reagents, offer the building blocks for laboratory-developed tests used in the identification of markers associated with blood cell disorders. These solutions are ordered as Analyte Specific Reagents (ASR) and their analytical and performance characteristics are not established.

Refer to manufacturer's instructions for use and related User Manuals and Technical Data Sheets before using this product as described.

Comparisons, where applicable, are made against older BD technology, manual methods or are general performance claims. Comparisons are not made against non-BD technologies, unless otherwise noted.