Skip to main content Skip to navigation
Biotin Rat Anti-Mouse CD122
Biotin Rat Anti-Mouse CD122

Flow cytometric analysis of CD122 expression on mouse splenic NK cells. C57BL/6 splenocytes were stained with FITC Rat Anti-Mouse CD49b (Cat. No. 553857/561067) alone (Left Panel) or simultaneously with Biotin Rat Anti-Mouse CD122 (Cat. No. 559884; Right Panel), followed by PE Streptavidin (Cat. No. 554061). Two-color contour plots were derived from gated events with the side and forward light-scattering characteristics of viable splenocytes. Flow cytometry was performed on a BD FACScan™ system.

  

Flow cytometric analysis of CD122 expression on mouse splenic NK cells. C57BL/6 splenocytes were stained with FITC Rat Anti-Mouse CD49b (Cat. No. 553857/561067) alone (Left Panel) or simultaneously with Biotin Rat Anti-Mouse CD122 (Cat. No. 559884; Right Panel), followed by PE Streptavidin (Cat. No. 554061). Two-color contour plots were derived from gated events with the side and forward light-scattering characteristics of viable splenocytes. Flow cytometry was performed on a BD FACScan™ system.

  

Product Details
Down Arrow Up Arrow


BD Pharmingen™
Il2rb; Il-2Rbeta; IL-2Rβ; IL-15Rbeta; IL-2/15 Receptor-beta; IL-2/15Rbeta
Mouse (QC Testing)
Rat SD, also known as Sprague-Dawley (outbred) IgG2b, κ
Mouse IL-2Rβ Transfected Cell Line
Flow cytometry (Routinely Tested)
0.5 mg/ml
16185
AB_397357
Aqueous buffered solution containing ≤0.09% sodium azide.
RUO


Preparation And Storage

Store undiluted at 4°C. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated with biotin under optimum conditions, and unreacted biotin was removed.

Product Notices

  1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
  2. An isotype control should be used at the same concentration as the antibody of interest.
  3. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  4. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  5. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
559884 Rev. 6
Antibody Details
Down Arrow Up Arrow
TM-β1

The TM-β1 monoclonal antibody specifically recognizes the 90-100-kDa β chain shared by the IL-2 and IL-15 receptors (IL-2Rβ, CD122). In the periphery, CD122 is expressed on CD8+ T lymphocytes, NK cells, NK-T cells, dendritic epidermal T cells, subsets of intraepithelial lymphocytes, and macrophages. Small subsets of fetal and adult thymocytes constitutively express CD122. CD122+ cells in the bone marrow include committed NK-cell progenitors. IL-2Rβ expression is upregulated by IL-2. CD122 is a transmembrane glycoprotein of the hematopoietin receptor superfamily which can combine with CD132 (γc) alone or CD132 plus CD25 (IL-2Rα) to form intermediate or high-affinity IL-2 receptor complexes, respectively. The β chain of these complexes, CD122, is involved in signal transduction and immunoregulation. The TM-β1 antibody blocks high affinity binding of IL-2 or IL-15 to IL-2Rβ.

559884 Rev. 6
Format Details
Down Arrow Up Arrow
Biotin
Biotin is a ubiquitous co-factor (also known as Vitamin B7) that has many properties that make it extremely useful for molecular biology. Biotin has an extremely high affinity for the Avidin family of proteins (Kd = 10-15 M), making it the perfect tool to link two molecules. Biotin labeled antibodies can be combined with any number of Avidin-conjugated probes in order to customize an assay to a particular need. This is especially useful in the case of magnetic cell separation using streptavidin/magnetic bead conjugates, or in the case of flow cytometry using streptavidin/fluorophore conjugates.
Biotin
559884 Rev.6
Citations & References
Down Arrow Up Arrow

Development References (18)

  1. Alleva DG, Kaser SB, Monroy MA, Fenton MJ, Beller DI. IL-15 functions as a potent autocrine regulator of macrophage proinflammatory cytokine production: evidence for differential receptor subunit utilization associated with stimulation or inhibition. J Immunol. 1997; 159(6):2941-2951. (Clone-specific). View Reference
  2. Bendelac A. Mouse NK1+ T cells. Curr Opin Immunol. 1995; 7(3):367-374. (Biology). View Reference
  3. Cho BK, Wang C, Sugawa S, Eisen HN, Chen J. Functional differences between memory and naive CD8 T cells. Proc Natl Acad Sci U S A. 1999; 96(6):2976-2981. (Biology). View Reference
  4. Giri JG, Ahdieh M, Eisenman J, et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 1994; 13(12):2822-2830. (Biology). View Reference
  5. Guy-Grand D, Cuenod-Jabri B, Malassis-Seris M, Selz F, Vassalli P. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. Eur J Immunol. 1996; 26(9):2248-2256. (Biology). View Reference
  6. Hanke T, Mitnacht R, Boyd R, Hunig T. Induction of interleukin 2 receptor beta chain expression by self-recognition in the thymus. J Exp Med. 1994; 180(5):1629-1636. (Biology). View Reference
  7. Kondo M, Ohashi Y, Tada K, Nakamura M, Sugamura K. Expression of the mouse interleukin-2 receptor gamma chain in various cell populations of the thymus and spleen. Eur J Immunol. 1994; 24(9):2026-2030. (Biology). View Reference
  8. Ku CC, Murakami M, Sakamoto A, Kappler J, Marrack P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science. 2000; 288(5466):675-678. (Biology). View Reference
  9. Malek TR, Furse RK, Fleming ML, Fadell AJ, He YW. Biochemical identity and characterization of the mouse interleukin-2 receptor beta and gamma c subunits. J Interferon Cytokine Res. 1995; 15(5):447-454. (Clone-specific). View Reference
  10. Nakanishi K, Hirose S, Yoshimoto T, et al. Role and regulation of interleukin (IL)-2 receptor alpha and beta chains in IL-2-driven B-cell growth. Proc Natl Acad Sci U S A. 1992; 89(8):3551-3555. (Clone-specific). View Reference
  11. Ohno H, Ono S, Hirayama N, Shimada S, Saito T. Preferential usage of the Fc receptor gamma chain in the T cell antigen receptor complex by gamma/delta T cells localized in epithelia. J Exp Med. 1994; 179(1):365-369. (Biology). View Reference
  12. Rosmaraki EE, Douagi I, Roth C, Colucci F, Cumano A, Di Santo JP. Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol. 2001; 31(6):1900-1909. (Biology). View Reference
  13. Suzuki H, Kundig TM, Furlonger C et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science. 1995; 268(5216):1472-1476. (Clone-specific). View Reference
  14. Takeuchi Y, Tanaka T, Hamamura K et al. Expression and role of interleukin-2 receptor beta chain on CD4-CD8- T cell receptor alpha beta+ cells. Eur J Immunol. 1992; 22(11):2929-2935. (Clone-specific). View Reference
  15. Tanaka T, Takeuchi Y, Shiohara T et al. In utero treatment with monoclonal antibody to IL-2 receptor beta-chain completely abrogates development of Thy-1+ dendritic epidermal cells. Int Immunol. 1992; 4(4):487-491. (Biology). View Reference
  16. Tanaka T, Tsudo M, Karasuyama H, et al. A novel monoclonal antibody against murine IL-2 receptor beta-chain. Characterization of receptor expression in normal lymphoid cells and EL-4 cells. J Immunol. 1991; 147(7):2222-2228. (Immunogen). View Reference
  17. Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: a current overview. Cell. 1993; 73(1):5-8. (Biology). View Reference
  18. Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity. 1998; 8(5):591-599. (Biology). View Reference
View All (18) View Less
559884 Rev. 6

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.