Skip to main content Skip to navigation
APC-Cy™7 Rat Anti-Mouse CD16/CD32
APC-Cy™7  Rat Anti-Mouse CD16/CD32

Analysis of CD16/CD32 on mouse splenocytes. Splenocytes from BALB/c mice were stained with the APC-Cy™7 Rat Anti-Mouse CD16/CD32 antibody (shaded) or a APC-Cy7 Rat IgG2b, κ isotype control (unshaded).  Histograms were derived from gated events based on light scattering characteristics for CD3- splenocytes.  Flow cytometry was performed on a BD™ LSRII flow cytometry system.

APC-Cy™7  Rat Anti-Mouse CD16/CD32

Analysis of CD16/CD32 on mouse splenocytes. Splenocytes from BALB/c mice were stained with a APC-Cy™7 Rat IgG2b, κ isotype control in conjunction with a FITC Hamster Anti-Mouse CD3e antibody.  Dot plots were derived from gated events based on light scattering characteristics for splenocytes.  Flow cytometry was performed on a BD™ LSRII flow cytometry system.

APC-Cy™7  Rat Anti-Mouse CD16/CD32

Analysis of CD16/CD32 on mouse splenocytes. Splenocytes from BALB/c mice were stained with APC-Cy™7 Rat Anti-Mouse CD16/CD32 antibody in conjunction with a FITC Hamster Anti-Mouse CD3e antibody.  Dot plots were derived from gated events based on light scattering characteristics for splenocytes.  Flow cytometry was performed on a BD™ LSRII flow cytometry system.

Analysis of CD16/CD32 on mouse splenocytes. Splenocytes from BALB/c mice were stained with the APC-Cy™7 Rat Anti-Mouse CD16/CD32 antibody (shaded) or a APC-Cy7 Rat IgG2b, κ isotype control (unshaded).  Histograms were derived from gated events based on light scattering characteristics for CD3- splenocytes.  Flow cytometry was performed on a BD™ LSRII flow cytometry system.

Analysis of CD16/CD32 on mouse splenocytes. Splenocytes from BALB/c mice were stained with a APC-Cy™7 Rat IgG2b, κ isotype control in conjunction with a FITC Hamster Anti-Mouse CD3e antibody.  Dot plots were derived from gated events based on light scattering characteristics for splenocytes.  Flow cytometry was performed on a BD™ LSRII flow cytometry system.

Analysis of CD16/CD32 on mouse splenocytes. Splenocytes from BALB/c mice were stained with APC-Cy™7 Rat Anti-Mouse CD16/CD32 antibody in conjunction with a FITC Hamster Anti-Mouse CD3e antibody.  Dot plots were derived from gated events based on light scattering characteristics for splenocytes.  Flow cytometry was performed on a BD™ LSRII flow cytometry system.

Product Details
Down Arrow Up Arrow


BD Pharmingen™
FcγRIII/FcγRII; Fcgr3/Fcgr2
Mouse (QC Testing)
Rat SD, also known as Sprague-Dawley (outbred) IgG2b, κ
Mouse BALB/c Macrophage J774
Flow cytometry (Routinely Tested)
0.2 mg/ml
AB_1645229
Aqueous buffered solution containing protein stabilizer and ≤0.09% sodium azide.
RUO


Preparation And Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated with APC-Cy7 under optimum conditions, and unconjugated antibody and free APC-Cy7 were removed.

Product Notices

  1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
  2. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
  3. Warning: Some APC-Cy7 and PE-Cy7 conjugates show changes in their emission spectrum with prolonged exposure to formaldehyde. If you are unable to analyze fixed samples within four hours, we recommend that you use BD™ Stabilizing Fixative (Cat. No. 338036).
  4. Please observe the following precautions: Absorption of visible light can significantly alter the energy transfer occurring in any tandem fluorochrome conjugate; therefore, we recommend that special precautions be taken (such as wrapping vials, tubes, or racks in aluminum foil) to prevent exposure of conjugated reagents, including cells stained with those reagents, to room illumination.
  5. APC-Cy7 tandem fluorochrome emission is collected in a detector for fluorescence wavelengths of 750 nm and higher.
  6. APC-Cy7 is a tandem fluorochrome composed of Allophycocyanin (APC), which is excited by laser lines between 595 and 647 nm and serves as an energy donor, coupled to the cyanine dye Cy7™, which acts as an energy acceptor and fluoresces at 780 nm. BD Biosciences Pharmingen has maximized the fluorochrome energy transfer in APC-Cy7, thus maximizing its fluorescence emission intensity, minimizing residual emission from APC, and minimizing required electronic compensation in multilaser-laser flow cytometry systems. Note: Although every effort is made to minimize the lot-to-lot variation in residual emission from APC, it is strongly recommended that every lot be tested for differences in the amount of compensation required and that individual compensation controls are run for each APC-Cy7 conjugate.
  7. Cy is a trademark of GE Healthcare.
  8. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  9. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  10. An isotype control should be used at the same concentration as the antibody of interest.
560541 Rev. 3
Antibody Details
Down Arrow Up Arrow
2.4G2

The 2.4G2 antibody specifically recognizes a common nonpolymorphic epitope on the extracellular domains of the mouse FcγIII (CD16) and FcγII (CD32) Receptors. It has also been reported to bind the FcγI receptor (CD64) via its Fc domain. 2.4G2 mAb blocks non-antigen-specific binding of immunoglobulins to the FcγIII and FcγII, and possibly FcγI, Receptors in vitro and in vivo. CD16 and/or CD32 are expressed on natural killer cells, monocytes, macrophages, dendritic cells (at low levels), Kupffer cells, granulocytes, mast cells, B lymphocytes, immature thymocytes, and some activated mature T lymphocytes.

560541 Rev. 3
Format Details
Down Arrow Up Arrow
APC-Cy7
APC-Cy7 dye is a part of the BD APC red family of dyes. This tandem fluorochrome is comprised of a Allophycocyanin (APC) donor that has excitation maxima (Ex Max) of 651 nm and an acceptor dye, Cy™7, with an emission maximum (Em Max) at 779 nm. APC-Cy7 can be excited by the Red (627-640 nm) laser and detected using an optical filter centered near 780 nm (e.g., a 760/60 nm bandpass filter). Please ensure that your instrument’s configurations (lasers and optical filters) are appropriate for this dye.
altImg
APC-Cy7
Red 627-640 nm
651 nm
779 nm
560541 Rev.3
Citations & References
Down Arrow Up Arrow

Development References (19)

  1. Araujo-Jorge T, Rivera MT, el Bouhdidi A, Daeron M, Carlier Y. An Fc gamma RII-, Fc gamma RIII-specific monoclonal antibody (2.4G2) decreases acute Trypanosoma cruzi infection in mice. Infect Immun. 1993; 61(11):4925-4928. (Biology: Blocking). View Reference
  2. Benhamou M, Bonnerot C, Fridman WH, Daeron M. Molecular heterogeneity of murine mast cell Fc gamma receptors. J Immunol. 1990; 144(8):3071-3077. (Biology: Immunoprecipitation). View Reference
  3. Jensen WA, Marschner S, Ott VL, Cambier JC. FcgammaRIIB-mediated inhibition of T-cell receptor signal transduction involves the phosphorylation of SH2-containing inositol 5-phosphatase (SHIP), dephosphorylation of the linker of activated T-cells (LAT) and inhibition of calcium mobilization. Biochem Soc Trans. 2001; 29(6):840-846. (Biology: Blocking). View Reference
  4. Kaji K, Takeshita S, Miyake K, Takai T, Kudo A. Functional association of CD9 with the Fc gamma receptors in macrophages. J Immunol. 2001; 166(5):3256-3265. (Biology: (Co)-stimulation). View Reference
  5. Katz HR, Arm JP, Benson AC, Austen KF. Maturation-related changes in the expression of Fc gamma RII and Fc gamma RIII on mouse mast cells derived in vitro and in vivo. J Immunol. 1990; 145(10):3412-3417. (Biology: Immunoprecipitation). View Reference
  6. Kurlander RJ, Ellison DM, Hall J. The blockade of Fc receptor-mediated clearance of immune complexes in vivo by a monoclonal antibody (2.4G2) directed against Fc receptors on murine leukocytes. J Immunol. 1984; 133(2):855-862. (Biology: Blocking). View Reference
  7. Latour S, Bonnerot C, Fridman WH, Daeron M. Induction of tumor necrosis factor-alpha production by mast cells via Fc gamma R. Role of the Fc gamma RIII gamma subunit. J Immunol. 1992; 149(6):2155-2162. (Biology: (Co)-stimulation). View Reference
  8. Lewis VA, Koch T, Plutner H, Mellman I. A complementary DNA clone for a macrophage-lymphocyte Fc receptor. Nature. 1986; 324(6095):372-375. (Biology). View Reference
  9. Maeda K, Burton GF, Padgett DA, et al. Murine follicular dendritic cells and low affinity Fc receptors for IgE (Fc epsilon RII). J Immunol. 1992; 148(8):2340-2347. (Biology: Immunohistochemistry). View Reference
  10. Mellman IS, Unkeless JC. Purificaton of a functional mouse Fc receptor through the use of a monoclonal antibody. J Exp Med. 1980; 152(4):1048-1069. (Biology: Immunoprecipitation). View Reference
  11. Perussia B, Tutt MM, Qiu WQ, et al. Murine natural killer cells express functional Fc gamma receptor II encoded by the Fc gamma R alpha gene. J Exp Med. 1989; 170(1):73-86. (Biology). View Reference
  12. Ravetch JV, Luster AD, Weinshank R, et al. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science. 1986; 234(4777):718-725. (Biology). View Reference
  13. Rodewald HR, Awad K, Moingeon P, et al. Fc gamma RII/III and CD2 expression mark distinct subpopulations of immature CD4-CD8- murine thymocytes: in vivo developmental kinetics and T cell receptor beta chain rearrangement status. J Exp Med. 1993; 177(4):1079-1092. (Biology: Immunoprecipitation). View Reference
  14. Rodewald HR, Moingeon P, Lucich JL, Dosiou C, Lopez P, Reinherz EL. A population of early fetal thymocytes expressing Fc gamma RII/III contains precursors of T lymphocytes and natural killer cells. Cell. 1992; 69(1):139-150. (Biology: Immunoprecipitation). View Reference
  15. Takezawa R, Watanabe Y, Akaike T. Direct evidence of macrophage differentiation from bone marrow cells in the liver: a possible origin of Kupffer cells. J Biochem (Tokyo). 1995; 118(6):1175-1183. (Biology). View Reference
  16. Titus JA, Finkelman FD, Stephany DA, Jones JF, Segal DM. Quantitative analysis of Fc gamma receptors on murine spleen cell populations by using dual parameter flow cytometry. J Immunol. 1984; 133(2):556-561. (Biology). View Reference
  17. Unkeless JC. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med. 1979; 150(3):580-596. (Immunogen). View Reference
  18. Vremec D, Zorbas M, Scollay R, et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med. 1992; 176(1):47-58. (Biology). View Reference
  19. Witmer MD, Steinman RM. The anatomy of peripheral lymphoid organs with emphasis on accessory cells: light-microscopic immunocytochemical studies of mouse spleen, lymph node, and Peyer's patch. Am J Anat. 1984; 170(3):465-481. (Biology: Immunohistochemistry). View Reference
View All (19) View Less
560541 Rev. 3

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.