-
Your selected country is
India
- Change country/language
Old Browser
This page has been recently translated and is available in French now.
Looks like you're visiting us from {countryName}.
Would you like to stay on the current country site or be switched to your country?
Regulatory Status Legend
Any use of products other than the permitted use without the express written authorization of Becton, Dickinson and Company is strictly prohibited.
Preparation And Storage
Recommended Assay Procedures
BD® CompBeads can be used as surrogates to assess fluorescence spillover (compensation). When fluorochrome conjugated antibodies are bound to BD® CompBeads, they have spectral properties very similar to cells. However, for some fluorochromes there can be small differences in spectral emissions compared to cells, resulting in spillover values that differ when compared to biological controls. It is strongly recommended that when using a reagent for the first time, users compare the spillover on cells and BD® CompBeads to ensure that BD® CompBeads are appropriate for your specific cellular application.
Product Notices
- Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
- Please refer to http://regdocs.bd.com to access safety data sheets (SDS).
- For U.S. patents that may apply, see bd.com/patents.
- Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
- Since applications vary, each investigator should titrate the reagent to obtain optimal results.
- The production process underwent stringent testing and validation to assure that it generates a high-quality conjugate with consistent performance and specific binding activity. However, verification testing has not been performed on all conjugate lots.
- Human donor specific background has been observed in relation to the presence of anti-polyethylene glycol (PEG) antibodies, developed as a result of certain vaccines containing PEG, including some COVID-19 vaccines. We recommend use of BD Horizon Brilliant™ Stain Buffer in your experiments to help mitigate potential background. For more information visit https://www.bdbiosciences.com/en-us/support/product-notices.
- When using high concentrations of antibody, background binding of this dye to erythroid fragments produced by ammonium chloride-based lysis, such as with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899), has been observed when the antibody conjugate was present during the lysis procedure. This may cause nonspecific staining of target cells, such as leukocytes, which have bound the resulting erythroid fragments. This background can be mitigated by any of the following: titrating the antibody conjugate to a lower concentration, fixing samples with formaldehyde, or removing erythrocytes before staining (eg, gradient centrifugation or pre-lysis with wash). This background has not been observed when cells were lysed with BD FACS™ Lysing Solution (Cat. No. 349202) after staining.
- For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
- An isotype control should be used at the same concentration as the antibody of interest.
- Please observe the following precautions: We recommend that special precautions be taken (such as wrapping vials, tubes, or racks in aluminum foil) to protect exposure of conjugated reagents, including cells stained with those reagents, to any room illumination. Absorption of visible light can significantly affect the emission spectra and quantum yield of tandem fluorochrome conjugates.
Companion Products
The D7 monoclonal antibody recognizes Ly-6A.2 and Ly-6E.1, which are allelic members of the Ly-6 multigene family. Sca-1 (Ly6A/E), a phosphatidylinositol-anchored protein of about 18 kDa, is expressed on the multipotent hematopoietic stem cells (HSC) in the bone marrow of mice with both Ly-6 haplotypes. In mice expressing the Ly-6.2 haplotype (e.g., AKR, C57BL, C57BR, C57L, C58, DBA/2, PL, SJL, SWR, 129), Ly-6A/E is also expressed on distinct subpopulations of bone marrow and peripheral B lymphocytes as well as thymic and peripheral T lymphocytes. Strains with the Ly-6.1 haplotype (e.g., A, BALB/c, CBA, C3H/He, DBA/1, NZB) have few Ly-6A/E+ resting peripheral lymphocytes; activation of lymphocytes from mice of both Ly-6 haplotypes leads to strong expression of the Sca-1 antigen. Studies with the D7 antibody have demonstrated that Ly-6A/E may be involved in the regulation of B and T lymphocyte responses, and appears to be required for T-cell receptor-mediated T-cell activation. The purified E13-161.7 mAb (anti-Ly-6A/E) can block binding of FITC-conjugated D7 antibody to mouse splenocytes, but purified mAb D7 is unable to block binding of FITC-conjugated E13-161.7 antibody. Anti-Ly-6A/E (Sca-1) mAb may be used in combination with a Mouse Lineage Panel of antibodies to identify HSC.
Development References (10)
-
Codias EK, Cray C, Baler RD, Levy RB, Malek TR. Expression of Ly-6A/E alloantigens in thymocyte and T-lymphocyte subsets: variability related to the Ly-6a and Ly-6b haplotypes. Immunogenetics. 1989; 29(2):98-107. (Clone-specific: Immunohistochemistry). View Reference
-
Codias EK, Malek TR. Regulation of B lymphocyte responses to IL-4 and IFN-gamma by activation through Ly-6A/E molecules. J Immunol. 1990; 144(6):2197-2204. (Clone-specific: Activation). View Reference
-
Flood PM, Dougherty JP, Ron Y. Inhibition of Ly-6A antigen expression prevents T cell activation. J Exp Med. 1990; 172(1):115-120. (Biology). View Reference
-
Malek TR, Danis KM, Codias EK. Tumor necrosis factor synergistically acts with IFN-gamma to regulate Ly-6A/E expression in T lymphocytes, thymocytes and bone marrow cells. J Immunol. 1989; 142(6):1929-1936. (Clone-specific: Activation). View Reference
-
Malek TR, Ortega G, Chan C, Kroczek RA, Shevach EM. Role of Ly-6 in lymphocyte activation. II. Induction of T cell activation by monoclonal anti-Ly-6 antibodies. J Exp Med. 1986; 164(3):709-722. (Clone-specific: Activation). View Reference
-
Moore T, Bennett M, Kumar V. Transplantable NK cell progenitors in murine bone marrow. J Immunol. 1995; 154(4):1653-1663. (Clone-specific: Flow cytometry, Fluorescence activated cell sorting). View Reference
-
Ortega G, Korty PE, Shevach EM, Malek TR. Role of Ly-6 in lymphocyte activation. I. Characterization of a monoclonal antibody to a nonpolymorphic Ly-6 specificity. J Immunol. 1986; 137(10):3240-3246. (Immunogen: Flow cytometry, Immunoprecipitation, Western blot). View Reference
-
Palfree RG, Dumont FJ, Hammerling U. Ly-6A.2 and Ly-6E.1 molecules are antithetical and identical to MALA-1. Immunogenetics. 1986; 23(3):197-207. (Clone-specific: Flow cytometry, Western blot). View Reference
-
Rock KL, Reiser H, Bamezai A, McGrew J, Benacerraf B. The LY-6 locus: a multigene family encoding phosphatidylinositol-anchored membrane proteins concerned with T-cell activation. Immunol Rev. 1989; 111:195-224. (Biology). View Reference
-
Yonemura Y, Ku H, Lyman SD, Ogawa M. In vitro expansion of hematopoietic progenitors and maintenance of stem cells: comparison between FLT3/FLK-2 ligand and KIT ligand. Blood. 1997; 89(6):1915-1921. (Clone-specific: Flow cytometry, Fluorescence activated cell sorting). View Reference
Please refer to Support Documents for Quality Certificates
Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described
Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims. Comparisons are not made against non-BD technologies, unless otherwise noted.
For Research Use Only. Not for use in diagnostic or therapeutic procedures.