Skip to main content Skip to navigation
RB613 Mouse Anti-T-bet
RB613 Mouse Anti-T-bet
Two-color flow cytometric analysis of T-bet expression in Human peripheral blood lymphocytes. Human whole blood was treated with BD Phosflow™ Lyse/Fix Buffer (Cat. No. 558049) to lyse erythrocytes and fix leukocytes. The leukocytes were permeabilized by treatment with BD Phosflow™ Perm Buffer III (Cat. No. 558050). The cells were then washed and stained with APC Mouse Anti-Human CD3 antibody (Cat. No. 561811) and with either BD Horizon™ RB613 Mouse IgG1, κ Isotype Control (Cat. No. 571106; Left Plot) or BD Horizon™ RB613 Mouse Anti-T-bet antibody (Cat. No. 571286/571346; Right Plot) at 0.5 µg/test. The bivariate pseudocolor density plot showing the correlated expression of T-bet (or Ig Isotype control staining) versus CD3 was derived from gated events with the forward and side light-scatter characteristics of intact lymphocytes. Flow cytometry and data analysis were performed using a BD LSRFortessa™ Cell Analyzer System and FlowJo™ Software. Data shown on this Technical Data Sheet are not lot specific.
Two-color flow cytometric analysis of T-bet expression in Human peripheral blood lymphocytes. Human whole blood was treated with BD Phosflow™ Lyse/Fix Buffer (Cat. No. 558049) to lyse erythrocytes and fix leukocytes. The leukocytes were permeabilized by treatment with BD Phosflow™ Perm Buffer III (Cat. No. 558050). The cells were then washed and stained with APC Mouse Anti-Human CD3 antibody (Cat. No. 561811) and with either BD Horizon™ RB613 Mouse IgG1, κ Isotype Control (Cat. No. 571106; Left Plot) or BD Horizon™ RB613 Mouse Anti-T-bet antibody (Cat. No. 571286/571346; Right Plot) at 0.5 µg/test. The bivariate pseudocolor density plot showing the correlated expression of T-bet (or Ig Isotype control staining) versus CD3 was derived from gated events with the forward and side light-scatter characteristics of intact lymphocytes. Flow cytometry and data analysis were performed using a BD LSRFortessa™ Cell Analyzer System and FlowJo™ Software. Data shown on this Technical Data Sheet are not lot specific.
Product Details
Down Arrow Up Arrow


BD Horizon™
T-box expressed in T cells; TBX21; T-box 21; TBLYM
Human (QC Testing), Mouse (Tested in Development)
Mouse IgG1, κ
Mouse T-bet Recombinant Protein
Intracellular staining (flow cytometry) (Routinely Tested)
0.2 mg/ml
30009, 57765
Aqueous buffered solution containing ≤0.09% sodium azide.
RUO


Preparation And Storage

The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated to the dye under optimum conditions and unreacted dye was removed. Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze.

Recommended Assay Procedures

BD® CompBeads can be used as surrogates to assess fluorescence spillover (compensation). When fluorochrome conjugated antibodies are bound to BD® CompBeads, they have spectral properties very similar to cells. However, for some fluorochromes there can be small differences in spectral emissions compared to cells, resulting in spillover values that differ when compared to biological controls. It is strongly recommended that when using a reagent for the first time, users compare the spillover on cells and BD® CompBeads to ensure that BD® CompBeads are appropriate for your specific cellular application.

Product Notices

  1. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
  2. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  3. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
  4. An isotype control should be used at the same concentration as the antibody of interest.
  5. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  6. Please refer to http://regdocs.bd.com to access safety data sheets (SDS).
  7. Human donor specific background has been observed in relation to the presence of anti-polyethylene glycol (PEG) antibodies, developed as a result of certain vaccines containing PEG, including some COVID-19 vaccines. We recommend use of BD Horizon Brilliant™ Stain Buffer in your experiments to help mitigate potential background. For more information visit https://www.bdbiosciences.com/en-us/support/product-notices.
  8. Species cross-reactivity detected in product development may not have been confirmed on every format and/or application.
  9. When using high concentrations of antibody, background binding of this dye to erythroid fragments produced by ammonium chloride-based lysis, such as with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899), has been observed when the antibody conjugate was present during the lysis procedure. This may cause nonspecific staining of target cells, such as leukocytes, which have bound the resulting erythroid fragments. This background can be mitigated by any of the following: titrating the antibody conjugate to a lower concentration, fixing samples with formaldehyde, or removing erythrocytes before staining (eg, gradient centrifugation or pre-lysis with wash). This background has not been observed when cells were lysed with BD FACS™ Lysing Solution (Cat. No. 349202) after staining.
  10. Please observe the following precautions: We recommend that special precautions be taken (such as wrapping vials, tubes, or racks in aluminum foil) to protect exposure of conjugated reagents, including cells stained with those reagents, to any room illumination. Absorption of visible light can significantly affect the emission spectra and quantum yield of tandem fluorochrome conjugates.
  11. Tandem fluorochromes contain both an energy donor and an energy acceptor. Although every effort is made to minimize the lot-to-lot variation in the efficiency of the fluorochrome energy transfer, differences in the residual emission from the donor may be observed. Additionally, multi-laser cytometers may directly excite both the donor and acceptor fluorochromes. Therefore, we recommend for every tandem conjugate, a matched individual single-stain control be acquired for generating a compensation or spectral unmixing matrix.
  12. CF™ is a trademark of Biotium, Inc.
  13. For U.S. patents that may apply, see bd.com/patents.
571346 Rev. 1
Antibody Details
Down Arrow Up Arrow
4B10

The 4B10 monoclonal antibody specifically binds to human and mouse T-bet. T-bet (T-box gene expressed in T cells) is a master regulatory transcription factor that is also known as TBX21 (T-box21) and TBLYM (T-box transcription factor, expressed in lymphocytes). Human (535 amino acids; 58.3 kDa predicted molecular mass) and mouse (530 amino acids; 57.7 kDa) T-bet proteins are encoded by the human TBX21 (chromosome 17) and mouse Tbx21 (chromosome 11) genes. The human and mouse T-bet protein amino acid sequences are 88% homologous. Human and mouse T-bet proteins share a highly conserved (98% homologous amino acid sequences) T-box protein domain that is centrally located and mediates binding to DNA. T-bet is expressed by and activates transcriptional activities within hematopoietic cells including stem cells,  NK and NKT cells and subsets of thymocytes, primed/activated  CD4+ T cells, CD8+ T cells and γδ T cells, B cells, and dendritic cells. Interferon-gamma (IFN-γ), interleukin-27 (IL-27), and IL-12 act on peripheral antigen-triggered (TCR-signaling) T cells to increase T-bet expression. With respect to T helper lymphocytes, T-bet directs the differentiation of naïve CD4+ precursor T cells to become Th1-like effector and memory cells. T-bet accomplishes this by activating Th1 genetic programs (including epigenetic modifications) while repressing opposing T helper subset programs. T-bet controls the upregulated expression of the Th1 signature cytokine, IFN-γ, the IL-12Rβ2 subunit and the Runx3 transcription factor and can repress the function of other transcriptional regulators, such as GATA-3 (master regulator of Th2 development) and the expression of other cytokines including IL-2, IL-4 and IL-5.

571346 Rev. 1
Format Details
Down Arrow Up Arrow
RB613
The BD Horizon RealBlue™ 613 (RB613) Dye is part of the BD® family of blue dyes. It is a tandem fluorochrome with an excitation maximum (Ex Max) at 492-nm and an emission maximum (Em Max) at 613-nm as measured using an antibody-dye conjugate. Driven by BD® innovation, RB613 can be used on both spectral and conventional cytometers and is designed to be excited by the Blue laser (488-nm) with reduced excitation by the 561-nm Yellow-Green laser. For conventional instruments equipped with a Blue laser (488-nm), RB613 can be used as an alternative to PE-CF594 and we recommend using an optical filter centered near 610-nm (eg, a 610/20-nm bandpass filter). For spectral instruments equipped with a Blue laser (488-nm), it can be used in conjunction with PE-CF594. RB613 is on average brighter than PE-CF594 off the blue laser.
altImg
RB613
Blue 488 nm
492 nm
613 nm
571346 Rev.1
Citations & References
Down Arrow Up Arrow
View product citations for antibody "571346" on CiteAb

Development References (10)

  1. Hibbert L, Pflanz S, De Waal Malefyt R, Kastelein RA. IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-Bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res. 2003; 23(9):513-522. (Biology). View Reference
  2. Hwang ES, Hong JH, Glimcher LH. IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508. J Exp Med. 2005; 202(9):1289-1300. (Clone-specific: Western blot). View Reference
  3. Hwang ES, Szabo SJ, Schwartzberg PL, Glimcher LH. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science. 2005; 307(5780):430-433. (Clone-specific: Western blot). View Reference
  4. Lugo-Villarino G, Maldonado-Lopez R, Possemato R, Penaranda C, Glimcher LH. T-bet is required for optimal production of IFN-gamma and antigen-specific T cell activation by dendritic cells. Proc Natl Acad Sci U S A. 2003; 100(13):7749-7754. (Biology). View Reference
  5. Peng SL, Szabo SJ, Glimcher LH. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci U S A. 2002; 99(8):5545-5550. (Biology). View Reference
  6. Peng SL. The T-box transcription factor T-bet in immunity and autoimmunity. Cell Mol Immunol. 2006; 3(2):87-95. (Biology). View Reference
  7. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000; 100(6):655-669. (Immunogen: Western blot). View Reference
  8. Takeda A, Hamano S, Yamanaka A, et al. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol. 2003; 170(10):4886-4890. (Biology). View Reference
  9. Townsend MJ, Weinmann AS, Matsuda JL, et al. T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity. 2004; 20(4):477-494. (Biology). View Reference
  10. Zhang WX, Yang SY. Cloning and characterization of a new member of the T-box gene family. Genomics. 2000; 70(1):41-48. (Biology). View Reference
View All (10) View Less
571346 Rev. 1

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.