Skip to main content Skip to navigation
RB705 Mouse Anti-Human KIR2DL1/S1/S3/S5 (CD158)
Product Details
Down Arrow Up Arrow


BD OptiBuild™
KIR2DL1 (CD158a/NKAT-1); KIR2DS1 (CD158h); KIR2DS3 (NKAT-7); KIR2DS5 (CD158g/NKAT-9)
Human (Tested in Development)
Mouse BALB/c IgG2b, κ
Human NK Clone LB2
Flow cytometry (Qualified)
0.2 mg/ml
3802, 3806, 3808, 3810
Aqueous buffered solution containing ≤0.09% sodium azide.
RUO


Preparation And Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated to the dye under optimum conditions that minimize unconjugated dye and antibody.

Recommended Assay Procedures

BD® CompBeads can be used as surrogates to assess fluorescence spillover (compensation). When fluorochrome conjugated antibodies are bound to BD® CompBeads, they have spectral properties very similar to cells. However, for some fluorochromes there can be small differences in spectral emissions compared to cells, resulting in spillover values that differ when compared to biological controls. It is strongly recommended that when using a reagent for the first time, users compare the spillover on cells and BD® CompBeads to ensure that BD® CompBeads are appropriate for your specific cellular application.

Product Notices

  1. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
  2. Please refer to http://regdocs.bd.com to access safety data sheets (SDS).
  3. For U.S. patents that may apply, see bd.com/patents.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  5. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
  6. The production process underwent stringent testing and validation to assure that it generates a high-quality conjugate with consistent performance and specific binding activity. However, verification testing has not been performed on all conjugate lots.
  7. Human donor specific background has been observed in relation to the presence of anti-polyethylene glycol (PEG) antibodies, developed as a result of certain vaccines containing PEG, including some COVID-19 vaccines. We recommend use of BD Horizon Brilliant™ Stain Buffer in your experiments to help mitigate potential background. For more information visit https://www.bdbiosciences.com/en-us/support/product-notices.
  8. When using high concentrations of antibody, background binding of this dye to erythroid fragments produced by ammonium chloride-based lysis, such as with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899), has been observed when the antibody conjugate was present during the lysis procedure. This may cause nonspecific staining of target cells, such as leukocytes, which have bound the resulting erythroid fragments. This background can be mitigated by any of the following: titrating the antibody conjugate to a lower concentration, fixing samples with formaldehyde, or removing erythrocytes before staining (eg, gradient centrifugation or pre-lysis with wash). This background has not been observed when cells were lysed with BD FACS™ Lysing Solution (Cat. No. 349202) after staining.
  9. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  10. An isotype control should be used at the same concentration as the antibody of interest.
  11. Cy is a trademark of Global Life Sciences Solutions Germany GmbH or an affiliate doing business as Cytiva.
  12. Please observe the following precautions: We recommend that special precautions be taken (such as wrapping vials, tubes, or racks in aluminum foil) to protect exposure of conjugated reagents, including cells stained with those reagents, to any room illumination. Absorption of visible light can significantly affect the emission spectra and quantum yield of tandem fluorochrome conjugates.
757601 Rev. 1
Antibody Details
Down Arrow Up Arrow
HP-MA4

The HP-MA4 monoclonal antibody specifically recognizes several Killer Cell Immunoglobulin-like Receptors (KIRs) which are also known as CD158 molecules. HP-MA4 recognizes Killer cell immunoglobulin-like receptor 2DL1 (encoded by KIR2DL1; aka, CD158a and NKAT-1), Killer cell immunoglobulin-like receptor 2DS1 (KIR2DS1; CD158h), Killer cell immunoglobulin-like receptor 2DS3 (KIR2DS3; NKAT-7), and Killer cell immunoglobulin-like receptor 2DS5 (KIR2DS5; CD158g, NKAT-9) which are collectively known as KIR2DL1/S1/S3/S5 (CD158). These type I transmembrane glycoproteins are encoded by polymorphic genes and have 2 extracellular Ig-like domains (KIR2D, domains D1 and D2) followed by a transmembrane region and either long (L) or short (S) cytoplasmic domains. Various CD158 molecules are differentially expressed by CD56dim natural killer (NK) cells and some T cells and can regulate their cytotoxic effector functions. Although different KIR gene content varies amongst haplotypes for individuals, certain "framework" genes including KIR3DL3, KIR3DP1, KIR3DL4, and KIR3DL2, are found in all haplotypes. KIR2DL1 has a long cytoplasmic domain with two tyrosine-based inhibitory motifs (ITIM) that enables inhibitory signal transduction by ligand-bound KIR2DL1 leading to reduced cytotoxic effector cell activity. KIR2DS1, KIR2DS3, KIR2DS5 (KIR2DS1/S3/S5) proteins each have a short cytoplasmic tail with a positively charged amino acid in their transmembrane region which allows association with the DAP12 transmembrane protein. DAP12 acts as an activating signal transduction element through its immunoreceptor tyrosine-based activation motifs (ITAMs) in its cytoplasmic domain leading to upregulated cytotoxic effector cell function. Some MHC class I molecules can serve as ligands for CD158 molecules, with HLA-C ligands reported for KIR2DL1, KIR2DS1, and KIR2DS5.

757601 Rev. 1
Format Details
Down Arrow Up Arrow
RB705
The BD Horizon RealBlue™ 705 (RB705) Dye is part of the BD® family of blue dyes. It is a tandem fluorochrome with an excitation maximum (Ex Max) at 498-nm and an emission maximum (Em Max) at 707-nm as measured using an antibody-dye conjugate. Driven by BD® innovation, RB705 can be used on both spectral and conventional cytometers and is designed to be excited by the Blue laser (488-nm) with minimal excitation by the 561-nm Yellow-Green laser. For conventional instruments equipped with a Blue laser (488-nm), RB705 can be used as an alternative to PerCP-Cy5.5 or BB700 and we recommend using an optical filter centered near 710-nm (e.g., a 695/40 or 710/50-nm bandpass filter). For spectral instruments equipped with a Blue laser (488-nm), it can be used in conjunction with PerCP-Cy5.5. RB705 is on average brighter than PerCP-Cy5.5 and BB700, and has minimal spillover into Yellow-Green detectors.
altImg
RB705
Blue 488 nm
498 nm
707 nm
757601 Rev.1
Citations & References
Down Arrow Up Arrow
View product citations for antibody "757601" on CiteAb

Development References (10)

  1. Baracho GV, Kara N, Rigaud S, Lo E, Widmann SJ, Tyznik AJ. Functional phenotyping of circulating human cytotoxic T cells and NK cells using a 16-color flow cytometry panel.. STAR Protoc. 2022; 3(1):101069. (Clone-specific: Cytotoxicity, Flow cytometry, Functional assay). View Reference
  2. Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology.. Immunology. 2017; 150(3):248-264. (Clone-specific: Flow cytometry). View Reference
  3. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations.. Immunology. 2011; 132(3):315-25. (Biology). View Reference
  4. De Miguel M, López-Botet M. Characterization of monoclonal antibodies specific for receptors of the KIR family. Inmunologia. 2002; 21(4):187-193. (Immunogen: Flow cytometry, Functional assay, Immunoprecipitation, Inhibition). View Reference
  5. Döhring C, Samaridis J, Colonna M. Alternatively spliced forms of human killer inhibitory receptors.. Immunogenetics. 1996; 44(3):227-30. (Clone-specific: Flow cytometry, Immunoprecipitation). View Reference
  6. Estefanía E, Flores R, Gómez-Lozano N, Aguilar H, López-Botet M, Vilches C. Human KIR2DL5 is an inhibitory receptor expressed on the surface of NK and T lymphocyte subsets.. J Immunol. 2007; 178(7):4402-10. (Clone-specific: Flow cytometry, Immunoprecipitation). View Reference
  7. Huard B, Prigent P, Pagès F, Bruniquel D, Triebel F. T cell major histocompatibility complex class II molecules down-regulate CD4+ T cell clone responses following LAG-3 binding. Eur J Immunol. 1996; 26(5):1180-1186. (Biology). View Reference
  8. Ikeda MA, Jakoi L, Nevins JR. A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc Natl Acad Sci U S A. 1996; 93(8):3215-3220. (Biology). View Reference
  9. Middleton D, Gonzelez F. The extensive polymorphism of KIR genes.. Immunology. 2010; 129(1):8-19. (Biology). View Reference
  10. Pende D, Falco M, Vitale M, et al. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation.. Front Immunol. 2019; 10:1179. (Clone-specific: Flow cytometry). View Reference
View All (10) View Less
757601 Rev. 1

 

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.