Skip to main content Skip to navigation
RB744 Mouse Anti-Human CD38
RB744 Mouse Anti-Human CD38
Multiparameter flow cytometric analysis of CD38 expression on Human peripheral blood leukocyte populations.  Human whole blood was stained with either BD Horizon™ RB744 Mouse IgG1, κ Isotype Control (Cat. No. 570519; Left Plot) or BD Horizon™ RB744 Mouse Anti-Human CD38 antibody (Cat. No. 570611/570699; Right Plot). The erythrocytes were lysed with BD FACS™ Lysing Solution (Cat. No. 349202). The bivariate pseudocolor density plot showing the correlated expression of CD38 (or Ig Isotype control staining) versus side light-scatter (SSC-A) signals was derived from gated events with the forward and side light-scatter characteristics of intact leukocytes. Flow cytometry and data analysis were performed using a BD FACSymphony™ A5 SE Cell Analyzer System and FlowJo™ Software.
Multiparameter flow cytometric analysis of CD38 expression on Human peripheral blood leukocyte populations.  Human whole blood was stained with either BD Horizon™ RB744 Mouse IgG1, κ Isotype Control (Cat. No. 570519; Left Plot) or BD Horizon™ RB744 Mouse Anti-Human CD38 antibody (Cat. No. 570611/570699; Right Plot). The erythrocytes were lysed with BD FACS™ Lysing Solution (Cat. No. 349202). The bivariate pseudocolor density plot showing the correlated expression of CD38 (or Ig Isotype control staining) versus side light-scatter (SSC-A) signals was derived from gated events with the forward and side light-scatter characteristics of intact leukocytes. Flow cytometry and data analysis were performed using a BD FACSymphony™ A5 SE Cell Analyzer System and FlowJo™ Software.
Product Details
Down Arrow Up Arrow


BD Horizon™
T10; ADP-ribosyl cyclase 1; Cyclic ADP-ribose hydrolase 1; gp45
Human (QC Testing)
Mouse IgG1, κ
Flow cytometry (Routinely Tested)
5 µl/test
III T155
952
Aqueous buffered solution containing ≤0.09% sodium azide.
RUO


Preparation And Storage

The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated to the dye under optimum conditions and unreacted dye was removed. Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze.

Recommended Assay Procedures

BD® CompBeads can be used as surrogates to assess fluorescence spillover (compensation). When fluorochrome conjugated antibodies are bound to BD® CompBeads, they have spectral properties very similar to cells. However, for some fluorochromes there can be small differences in spectral emissions compared to cells, resulting in spillover values that differ when compared to biological controls. It is strongly recommended that when using a reagent for the first time, users compare the spillover on cells and BD® CompBeads to ensure that BD® CompBeads are appropriate for your specific cellular application.

Product Notices

  1. When using high concentrations of antibody, background binding of this dye to erythroid fragments produced by ammonium chloride-based lysis, such as with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899), has been observed when the antibody conjugate was present during the lysis procedure. This may cause nonspecific staining of target cells, such as leukocytes, which have bound the resulting erythroid fragments. This background can be mitigated by any of the following: titrating the antibody conjugate to a lower concentration, fixing samples with formaldehyde, or removing erythrocytes before staining (eg, gradient centrifugation or pre-lysis with wash). This background has not been observed when cells were lysed with BD FACS™ Lysing Solution (Cat. No. 349202) after staining.
  2. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
  3. This reagent has been pre-diluted for use at the recommended Volume per Test. We typically use 1 × 10^6 cells in a 100-µl experimental sample (a test).
  4. An isotype control should be used at the same concentration as the antibody of interest.
  5. Please observe the following precautions: We recommend that special precautions be taken (such as wrapping vials, tubes, or racks in aluminum foil) to protect exposure of conjugated reagents, including cells stained with those reagents, to any room illumination. Absorption of visible light can significantly affect the emission spectra and quantum yield of tandem fluorochrome conjugates.
  6. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  7. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  8. Human donor specific background has been observed in relation to the presence of anti-polyethylene glycol (PEG) antibodies, developed as a result of certain vaccines containing PEG, including some COVID-19 vaccines. We recommend use of BD Horizon Brilliant™ Stain Buffer in your experiments to help mitigate potential background. For more information visit https://www.bdbiosciences.com/en-us/support/product-notices.
  9. Please refer to http://regdocs.bd.com to access safety data sheets (SDS).
  10. For U.S. patents that may apply, see bd.com/patents.
570611 Rev. 1
Antibody Details
Down Arrow Up Arrow
HIT2

The HIT2 monoclonal antibody specifically binds to CD38. The CD38 antigen is also known as T10, ADP-ribosyl cyclase 1, and cyclic ADP ribose hydrolase 1. CD38 is a 45 kDa type II single-chain transmembrane glycoprotein present on thymocytes, activated T cells and terminally differentiated B cells (plasma cells). CD38 is expressed by other cells including monocytes, macrophages, dendritic cells, NK cells, myeloid and erythroid precursors and some epithelial cells. The CD38 antigen acts as an ectoenzyme that catalyzes the synthesis and hydrolysis of a Ca++ mobilizing agent, cyclic ADP-ribose. This intracellular calcium plays an important role in cell signaling pathways leading to cellular growth, apoptosis, and differentiation. CD38 binds to CD31 and thus plays a role in lymphocyte adhesion to endothelial cells.

570611 Rev. 1
Format Details
Down Arrow Up Arrow
RB744
The BD Horizon RealBlue™ 744 (RB744) Dye is part of the BD® family of blue dyes. It is a tandem fluorochrome with an excitation maximum (Ex Max) at 498-nm and an emission maximum (Em Max) at 746-nm as measured using an antibody-dye conjugate. Driven by BD® innovation, RB744 can be used on both spectral and conventional cytometers and is designed to be excited by the Blue laser (488-nm) with minimal excitation by the 561-nm Yellow-Green laser. For conventional instruments equipped with a Blue laser (488-nm), we recommend using an optical filter centered near 750-nm (e.g., a 750/60-nm bandpass filter).
altImg
RB744
Blue 488 nm
498 nm
746 nm
570611 Rev.1
Citations & References
Down Arrow Up Arrow
View product citations for antibody "570611" on CiteAb

Development References (11)

  1. Baracho GV, Kara N, Rigaud S, Lo E, Widmann SJ, Tyznik AJ. Functional phenotyping of circulating human cytotoxic T cells and NK cells using a 16-color flow cytometry panel.. STAR Protoc. 2022; 3(1):101069. (Clone-specific: Cytotoxicity, Flow cytometry, Functional assay). View Reference
  2. Deaglio S, Morra M, Mallone R, et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol. 1998; 160(1):395-402. (Biology). View Reference
  3. Dörken B, Möller P, Pezzutto A, Schwartz-Albiez R, Moldenhauer G. B-cell antigens: CD38. In: Knapp W. W. Knapp .. et al., ed. Leucocyte typing IV : white cell differentiation antigens. Oxford New York: Oxford University Press; 1989:86.
  4. Hernandez-Lopez C, Varas A, Sacedon R, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood. 2002; 99(2):546-554. (Clone-specific: Flow cytometry). View Reference
  5. Jackson DG, Bell JI. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J Immunol. 1990; 144(7):2811-2815. (Clone-specific: Cell separation, Immunoprecipitation). View Reference
  6. Jourdan M, Caraux A, Caron G, et al. Characterization of a transitional preplasmablast population in the process of human B cell to plasma cell differentiation. J Immunol. 2011; 187(8):3931-3941. (Clone-specific: Flow cytometry, Fluorescence activated cell sorting). View Reference
  7. Lanier LL, Le AM, Ding AH, Evans EL. Analysis of the Workshop T-cell monoclonal antibodies by 'Indirect two-colour immunofluorescense' and multiparameter flow cytometry. In: McMichael AJ. A.J. McMichael .. et al., ed. Leucocyte typing III : white cell differentiation antigens. Oxford New York: Oxford University Press; 1987:62-68.
  8. McMichael AJ, Gotch FM. T-cell antigens: new and previously defined clusters. In: McMichael AJ. A.J. McMichael .. et al., ed. Leucocyte typing III : white cell differentiation antigens. Oxford New York: Oxford University Press; 1987:31-62.
  9. Roy MP, Kim CH, Butcher EC. Cytokine control of memory B cell homing machinery. J Immunol. 2002; 169(4):1676-1682. (Clone-specific: Flow cytometry). View Reference
  10. Schlossman SF. Stuart F. Schlossman .. et al., ed. Leucocyte typing V : white cell differentiation antigens : proceedings of the fifth international workshop and conference held in Boston, USA, 3-7 November, 1993. Oxford: Oxford University Press; 1995.
  11. Zola H. Leukocyte and stromal cell molecules : the CD markers. Hoboken, N.J.: Wiley-Liss; 2007.
View All (11) View Less
570611 Rev. 1

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.