Optimizing Intracellular Flow Cytometry:

Simultaneous Detection of Cytokines and Transcription Factors

An encore presentation by
Jurg Rohrer, PhD, BD Biosciences
10.26.10
Outline

• Introduction
 – Cytokines
 – Transcription factors
• Basic concepts of intracellular flow cytometry
 – Optimization examples
• CD4 T helper cell polarization analyses
 – Considerations
 – Examples
Cytokines

- Soluble polypeptides produced by most nucleated cells in the body
- Some potent producers include endothelial and epithelial cells and resident macrophages, especially near the interface with the external environment
- Critical to the development and functioning of both the innate and adaptive immune responses
- Promote cellular differentiation and proliferation
 - Example: IL-2 involved in T cell activation and maintenance of a Th1 response
- Work in either an autocrine or paracrine manner
Th17 Cells

- A subset of CD4$^+$ T helper cells
- Developmentally distinct from Th1 and Th2 cells
- Immunity against bacterial and fungal infectious
- Play a key role in autoimmune diseases (tissue injury)
- Controlling Th17 activity could aid in the treatment of autoimmune diseases
- TGF-β, IL-6, IL-21, IL-1β, and IL-23 appear to drive Th17 development
- Produce IL-17A, IL-17F; also IL-21, IL-22, IL-26, and less TNF and IL-6
Transcription Factors

- Proteins that bind to specific DNA sequences
- Control the transfer of genetic information from DNA to RNA
- Regulators of gene expression
- A single transcription factor can bind hundreds of promoters
Regulatory T cells (Treg)

- Actively suppress T cell proliferation, crucial for T cell homeostasis
- FoxP3, transcription factor is a specific marker for Treg
- FoxP3 is necessary for both development and function of Treg
- nTreg develop in the thymus, iTreg require TGFβ, IL-2 & RA
- Produce TGFβ and IL-10 and express high levels of CD25 and low levels of CD127
- Dampening Treg activity could improve anti-tumor responses and responses to vaccinations and chronic infections
- Boosting Treg activity could be useful in the treatment of T cell induced diseases
CD4⁺ T Cell Differentiation

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
What is Intracellular Flow Cytometry?

• Detection of:
 – Transcription factors
 – Intracellular signaling molecules
 – Cytokines
 – Structural proteins
 – Scaffold proteins
 – Pan and phospho-specific antigens
Considerations for Intracellular Flow Cytometry

• Must permeabilize a cell to access cell contents

• If a cell is permeabilized, contents could “leak” out and the protein of interest could be lost

• Therefore, cells are fixed first, followed by permeabilization

• To detect secreted proteins, they must be “trapped” within the cell prior to fixation and permeabilization to increase the likelihood of detection
Considerations for Intracellular Flow, *cont’d*

- **Protein transport inhibition**
 - Monensin vs Brefeldin A (BD GolgiStop™ vs BD GolgiPlug™ inhibitor)
 - Optimal time for inhibition
 - Optimal concentration of inhibitor

- **Fixation**
 - Concentration (paraformaldehyde)
 - Time
 - Temperature
 - Compatibility with fluorochromes
 - Compatibility of cell surface markers
Considerations for Intracellular Flow, cont’d.

• Permeabilization
 – Perm agent (saponin, methanol, Tween® 20, Triton X-100™)
 – Concentration
 – Time
 – Temperature
 – Compatibility with fluorochromes
 – Compatibility of cell surface markers

• Different locations in cells are more difficult to access

• Types of proteins being identified, single or in a complex?
Considerations for Intracellular Flow, *cont’d.*

- **Antibody staining**
 - Order
 - Concentration
 - Time
 - Temperature
 - Fluorochromes

- **Storage conditions**
 - Buffer
 - Time

- **Matching one antibody protocol with another antibody protocol**
Buffer Choices

- Fixation buffer
- BD Cytofix/Cytoperm™ & BD™ Perm/Wash buffer
- BD Pharmingen™ FoxP3 buffer set (mouse or human)
- BD™ Phosflow Perm Buffer II
- BD™ Phosflow Perm Buffer III
- BD IntraSure™ kit
- BD FastImmune™ kits
BD FastImmune™ Kits

- Optimized kits containing antibodies and buffers for simultaneous detection of cell surface markers and cytokines from whole blood.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Studying T cell Polarization

- Requires the need to detect both transcription factors, surface markers and cytokines in the same sample
- If detecting FoxP3 then have a unique protocol for both mouse and human FoxP3 staining
- Questions:
 - How well does cytokine staining work in the FoxP3 buffer system or vice versa?
 - How well do other intracellular and surface markers work with the FoxP3 buffer system?
- Examples of FoxP3 optimization followed by addition of other markers
Effect of BD Cytofix/Cytoperm Buffer on Mouse Foxp3 Staining

BD Cytofix/Cytoperm

Foxp3 Buffer

Mouse Foxp3 Alexa Fluor® 647
Effect of Human FoxP3 Buffer System on Mouse Foxp3 Staining

Human FoxP3 buffer

Mouse Foxp3 buffer

Human Cells
Human FoxP3

Mouse Cells
Mouse Foxp3

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Effect of Fixation Time and Temperature on Mouse Foxp3 Staining

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Effect of FoxP3 Buffer on Mouse IL-17 Staining

Gated on CD4\(^+\) lymphocytes
Effect of BD Cytofix/Cytoperm Buffer on Human Foxp3 Staining

Unstimulated

Stimulated

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Effect of FoxP3 Buffer on Human IFNγ Staining
Optimizing Cell Surface Staining Example
Human CD4, Clone: RPA-T4

Live Cell Stain

FITC A488 PE PE-Cy5 PE-Cy7 PCP-Cy5.5 APC A647 APC-Cy7 PB V450 A700

1x

1/4x

1/16x

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Optimizing Cell Surface Staining Example, cont.

BD Phosflow Lyse/Fix Buffer and BD Perm/Wash buffer

<table>
<thead>
<tr>
<th>FITC</th>
<th>A488</th>
<th>PE</th>
<th>PE-Cy5</th>
<th>PE-Cy7</th>
<th>PCP-Cy5.5</th>
<th>APC</th>
<th>A647</th>
<th>APC-Cy7</th>
<th>PB</th>
<th>V450</th>
<th>A700</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Optimizing Cell Surface Staining Example, cont’d.

BD Phosflow Lyse/Fix Buffer and BD Phosflow Perm Buffer III

<table>
<thead>
<tr>
<th>FITC</th>
<th>A488</th>
<th>PE</th>
<th>PE-Cy5</th>
<th>PE-Cy7</th>
<th>PCP-Cy5.5</th>
<th>APC</th>
<th>A647</th>
<th>APC-Cy7</th>
<th>PB</th>
<th>V450</th>
<th>A700</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td></td>
</tr>
<tr>
<td>1/4x</td>
<td></td>
</tr>
<tr>
<td>1/16x</td>
<td></td>
</tr>
</tbody>
</table>

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Optimizing Cell Surface Staining – Unstimulated

Clone SK3

0.5 μg

Unstimulated CD4 PerCP-Cy™5.5

Clone L200

0.125 μg

BD Cytofix/Cytoperm Staining Conditions

Unstimulated PBMC
Optimizing Cell Surface Staining – Stimulated

Clone SK3

Clone L200

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Simultaneous detection of human FoxP3, IL-17, IL-4, and IFNγ in CD4⁺ T cells.

- Freshly isolated PBMC
- Either stimulated or not
 - PMA/Ionomycin with BD GolgiStop
 - 5 hours 37°C
- Fix (2 ways) and stored O/N in stain buffer
- Perm (2 ways) and stain 40 minutes
 - CD4 PerCP-Cy5.5
 - FoxP3 V450
 - IL-17 Alexa Fluor® 647
 - IFNγ FITC
 - IL-4 PE
- Acquire and analyze
Setting the CD4\(^+\) gate

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Stimulated PBMC

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Cytokine and FoxP3 detection in differentially polarized human Thelper Cells

PBMC stimulated with plate-bound anti-CD3 and soluble anti-CD28 plus recombinant cytokine IL-2 in the presence of additional cytokines and neutralizing mAbs as follows:

- **TH1:** IL-12, neutralizing anti-IL-4
- **TH2:** IL-4, neutralizing anti-IFN-γ
- **TH9:** IL-4, TGF-β, neutralizing anti-IFN-γ
- **TH17:** IL-6, IL-1β, IL-23, TGF-β, neutralizing anti-IFN-γ and anti-IL-4

Cells were cultured for 4-14 days and then washed and restimulated for 5 hours with PMA and Ionomycin in the presence of BD GolgiStop protein transport inhibitor before intracellular staining.
Cytokine Expression on Polarized Th Cells

BD Cytofix/Cytoperm Staining Conditions

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
TGF-β Regulates hIL-17A, hIL-9 Secretion

BD Cytofix/Cytoperm Staining Conditions

w/o TGF-β

w/TGF-β

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Requirement of TGFβ for the differentiation of mouse Th17 CD4+ T cells

- Freshly isolated spleen
- Purify CD4+ T cells by panning
- Polarize T cells on anti-CD3 coated plates in the presence of CD28, IL-6 and IL1β either with or without TGFβ
- After 4 days harvest the cells and stimulate with PMA/Ionomycin with GolgiStop™ for 5 hours
- Fix (2 ways) and store O/N in stain buffer
- Perm (2 ways) and stain 40 minutes
 - CD4 V450
 - FoxP3 Alexa Fluor® 488
 - IL-17 PerCP-Cy™5.5
 - IL-4 PE
- Acquire and analyze
Differentiated CD4+ T cells

No TGFβ

+TGFβ

BD Cytofix/Cytoperm
FoxP3 Buffer

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Differentiated CD4+ T cells, cont’d.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.
Summary

• Determine marker combination(s) for your experiment
• Pair the brightest dye with dimmest marker
• Determine optimal buffers for your antibodies
• Begin cross testing antibodies in different buffers
 – Typically optimize conditions for intracellular staining first and then determine what works best for your chosen cell surface markers
 – Understand what compromises can be made
• If cell surface markers do not stain post fixation/permeabilization:
 – Try stain surface markers post fixation but prior to permeabilization
 – Try stain surface markers prior to fixation and permeabilization
• Once optimal conditions have been determined for your particular needs, proceed with experiments
Acknowledgements

• Xiao-Wei Wu
• Ai-Li Wei
• Li Li
• Ravi Hingorani
• Jeanne Elia
• Christopher Boyce
If you have further questions:

Contact your US Reagent Sales Rep
or e-mail: ResearchApplications@bd.com