Fluorochrome Performance Guide

Prioritize clean fluorochromes and simplify panel design

Flow cytometry users choose from hundreds of fluorochromes for their conventional and spectral flow cytometry assays. The physical properties of all fluorochromes are not the same, and differences in resolution and spillover can significantly impact panel resolution and data interpretation. The process of learning every fluorochrome's properties can seem overwhelming and intimidating. As a result, flow cytometry users feel more comfortable using familiar fluorochromes, such as PerCP-Cy5.5 or PE tandems, which may present challenges and even limit or compromise the quality of data.

This guide is intended to help simplify panel design and minimize loss of data quality and resolution. By using the Fluorochrome Performance Chart and the Fluorochrome and Antigen Pairing Guide presented here, you can easily prioritize fluorochromes with minimal spillover and appropriate resolution.

Fluorochrome Performance Chart

[^0]
Generating the Fluorochrome Performance Chart

Pairing clean fluorochromes and markers

The Fluorochrome Performance Chart organizes and ranks fluorochromes based on spillover and resolution, two of the most critical factors in fluorochrome selection.

Fluorescence spillover defines the spectral overlap between the emission profile of two fluorochromes. Spectral overlap can be managed through compensation or spectral unmixing to prevent data artifacts. However, these two processes do not eliminate spillover spread, the main source of background and loss of resolution in multiparameter flow cytometry assays. Spread is directly correlated with spillover (the level to which two fluorochrome profiles overlap) and signal intensity (antigen density and fluorochrome brightness).

Spillover is evaluated and ranked based on the analysis of a given fluorochrome's full emission profile across five lasers. Fluorochromes with a single emission peak are ranked as 1 and fluorochromes excited by multiple lasers are ranked as 2,3 or 4 (additional peaks were counted if the spillover than 15% of the main peak signal). Adjacent spillover is not taken into consideration for this ranking.
(1)

(3)

(4)

Fluorochrome resolution defines the degree of separation between the negative and positive populations. Signal intensity also contributes to the total amount of spread, where cells expressing antigens at higher density will introduce higher spread.

Resolution is determined by comparing the stain index of fluorochromes conjugated to several antibody lones on a variety of flow cytometers to capture variation in configurations. A ranking of 1 identifies dim luorochromes with relatively low stain index, and 4 identifies brighter fluorochromes with higher stai index. Scan the QR code for a list of fluorochrome resolution rankings by primary excitation laser line.

\square (3)

By prioritizing fluorochromes in columns 1 and 2 , users can design panels while minimizing resolution loss due to spillover-spreading error (spread). When additional challenges are present, such as limited reagent availability or designing very large panels, the other fluorochromes (columns 3 and 4) can be carefully incorporated into the panel.

For "Clearly Resolved" and highly expressed markers, resolution is minimally impacted by the spillover spread that may be introduced by fluorochromes with adjacent main emission peaks (e.g., BB515 and RB545), especially if the two markers are not oo-expressed. "Not Clearly Resolved Markers" are less likely to introduce spread due to low antigen density. For variable markers and markers with unknown expression levels, bright fluorochromes with minimal spillover will help ensure resolution of the populations at the low end of expression range, while minimizing any spread from the population at the high end of expression
range. range.
Note that although feasible in spectral flow cytometry, use of very similar fluorochromes in a panel (e.g., FITC and BB515, APC and Alexa Fluor "647) should be avoided to prevent high spread.

Putting the Performance Guide to use

A 17-color flow cytometry panel was designed following the strategy provided in this guide. The list of usable fluorochromes was first narrowed down based on low spillover ranking from the Fluorochrome Performance Chart (Figure 1, columns 1 and 2). Fluorochromes were then selected and assigned to markers based on antigen profile, expression profile and reagent availability, as per the Fluorochrome and Antigen Pairing Guide.

The use of overall clean dyes with minimal spillover ensured the clear resolution of several lymphocyte populations and the analysis of inhibitory receptors' expression therein.

Marker	Fluorochrome
CD45	BUV395
CD3	RB545
CD4	APC-H7
CD8	BUV805
CD56	BV480
CD16	RY610
CD45RA	BB515
CD197	BUV615
CD95	BV421
PD-1	RB780
TIGIT	AF647
KLRG1	R718
TCR GD	RB744
CD25	RB705
FoxP3	RB613
CD19	BV786
CD127	RY586

Representative analysis of human PBMCS isolated from a healthy donor and stained with the panel shown on the left. Several lymphocyte populations, including B cells, NK cells and T cells (gamma delta, Tregs, memory $\mathrm{CD}^{+}{ }^{+}$and $\mathrm{CD} 8^{+}$cells) could be clearly resolved. The bottom insert shows a representative analysis of the expression of TIGIT and PD-1 throughout distinct subsets of naïve and memory CD8 $^{+} T$ cells. Samples were acquired and spectrally unmixed on a BD FACSCSymphony" A5 SE Flow Cytometer.

The continuous development of fluorochromes with lower cross-laser excitation offers more and new options for the design of flow cytometry panels with reduced spread and higher biological resolution. Combine the information from the Fluorochrome Performance Guide and the Antigen Pairing Guide to simplify the design of high-quality flow cytometry panels.

BD flow cytometers are Class 1 Laser Products.
For Research Use Only. Not for use in diagnostic or therapeutic procedures.

bdbiosciences.com

BD, the BD Logo, BD FACSymphony, BD Horizon RealBlue, BD Horizon RealYellow and Horizon are trademarks of Becton, Dickinson and Company or its affiliates. All other trademarks are the property of their respective owners. © 2024 BD. All rights reserved. BD-115903 (v3.0) 0424
Alexa Fluor is a trademark of Life Technologies Corporation. CF is a trademark of Biotium, Inc. Cy is a trademark of Global Life Sciences Solutions Germany GmbH or an affiliate doing business as Cytiva.

[^0]: Chart contains representative fluorochromes compatible with a 5-laser spectral flow cytometer. Table may differ based on instrument configuration and settings. Spillover ranking is based on cross-laser excitation and does not take into account spillover into adjacent detectors.

