

System Equalizer: An automated system setup based on detector calibration and reference cell samples.

Ludovic Monheim,¹ Nathanael Schwab,² Aaron J Tyznik² and Michael Reitsma² ¹BD Biosciences, Erembodegem, Belgium; ² BD Biosciences, 2350 Qume Drive, San Jose, CA 95131

Abstract

With the rise of full spectrum flow cytometry, instrument setup has become more challenging due to the increased number of detectors and the unavailability of single stains for every channel.

Multiple solutions have been used to overcome this challenge, but they are often time and reagent consuming or introduce subjective user-specific assessments of individual channel performance to define optimal settings. System Equalizer proposes an automated approach that provides an

Results

1: Voltration curves & target rSD selection Statistical analysis of multiple Voltration curves show an average of >75% SI for all detectors at 3x rSDEN. This multiplier is proposed as a good balance between sensitivity and negative noise contribution.

3: System equalizer accuracy.

rSD of reference sample is compared before at CST PMT\ and after at calculated PMTV to demonstrate accuracy. For some detectors an iteration can be required for improved accuracy.

5: System equalizer workflow visualization Baseline logfile and reference data are loaded into the System equalizer (1,2,3), target rSD is selected (4) and cells are re-acquired at calculated PMTV to confirm target rSD is reached (5). The time needed to generate the Equalized instrument settings file is less than 2 minutes using this

- instrument-specific setting that considers baseline definition run and unstained cell reference data.
- At a fixed PMT voltage (PMTV) the amplification of the multiple detected signals is linear. However, the response curves for each individual PMT detector have different profiles at variable voltage points.
- System Equalizer uses a curve-fitting approach to match the baseline data outside of the electronic noise-sensitive range and extracts the Voltration data run during the baseline to create detector calibration curves.
- Unstained cell reference data allows incorporation of the intrinsic particle difference between unstained beads and target cells.
- The target PMTVs are set so that cells are detected 1 to 5 times rSDEN and can be directly imported into BD FACSDiva[™] Software.
- System Equalizer provides an objective way to perform instrument setup based on data (the input logfile and cell reference data) and selected multiplication factor for each PMT detector.

System Equalizer workflow:

Instruments running on FACSDiva[™] are calibrated by running a baseline in CS&T[™] software. Detector calibration data is extracted from the logfile by file parsing into a csv table to transfer to excel

Custom calculation columns are added to the data table to get rSD & Stain Index information for every datapoint.

To ensure proper functionality and reduce rSDEN contribution to the curve fit, datapoints are subject to a range criteria evaluation.

Curves are fitted to the datapoints for every detector using the Microsoft Excel add-in Solver to minimize the Sum Chi² value between the fitted curve and the dataset by altering the fitted curve variables A & B. Unstained Cell reference data is acquired in FACSDiva^{TM.}.

Instrument settings (Cell Ref PMTV) and population statistics (Cell Ref rSD) are exported in instrument settings file and .csv files respectively and then added into the Equalizer table.

A delta PMTV between the reference data and the fitted curve is calculated to define the offset between the beads and the reference cells.

A multiplier is selected between 1 & 5 x rSDEN and PMTV are calculated to put the reference cells at that target rSD. Using rSDEN targets a value between 2 & 5 should be used as multiplier, 1x is only to be used for custom defined targets.

The PMTV is exported into an instrument settings file that can be imported back into FACSDiva. The reference cells are run again to confirm the calculated PMTV are reaching the target rSD. Using Macro recording and look-up tables all these steps are automated to remove user dependent decisions and allow robust PMTV selection.

Figure 4: offset included overlay between bead rSD & Cell rSD curves.

Figure 5: visualization of offset calculation

Calculated Offset

-32.78650235

UV736

-32

3

350 34.43168

465 223.46898 33.720 290.0438 42.43

365 0648 59 658

446.80026 153.616 455.4095 208.404

68.9744

95 1845

208.404

387.54095 68.9745

64 386 525 95 1845

Baseline

🔹 rSD 🛛 💌 r

Channel

Offset

rSDEN x

 PMTV
 Channe
 r SDEN
 target rSI

 200
 UV736
 22.7469
 68.240828

 900
 UV736
 22.7469
 68.240828

2 9UV736 UV736

11UV736 UV73

13UV736 UV7

15UV736_UV736

17UV736 UV

calculation match accuracy on the curves. Select desired target rSD

Plots:

∕oltratioı

Bead rSI 👻 Cell rSD 🔹

2144

- Dark Blue: Cell rSD: Unstained cell Voltration curve of rSD vs PMTV.
- Orange: Bead rSD: CST dim bead Voltration curve of rSD vs PMTV.
- Yellow line: rSD Ranged: data points from baseline within acceptance criteria. (criteria adjusted from 10x rSDEN to 255 to include more datapoints on some channels, like V427)

UV736

- Bright blue: target rSD: shows x rSDEN.
- CST SI: Shows Bright vs dim bead SI vs PMTV on secondary axis.

Figure 11: Unstained Lymphocytes reference (top) & Equalized at 3x rSDEN (bottom)

6: System equalizer Excel calculation interface Baseline logfile is used to build the system equalizer interface table that uses the curve-fit calculation data and Lookup functions to import the cell reference information from a table.

Users only need to select the value for the rSDEN Multiplier. The look-up table has macro enabled fields to extract the data form the cell reference into the system equalizer calculation table and back to FACSDiva[™] via an instrument settings file.

rSDEN x

3

Figure 12: System equalizer calculation table.

Figure 9: Comparison between traditional Voltration and system equalizer visualized Data courtesy of Susmita Jasti, Ph.D., Eurofins Clinical Trial Solutions, Vircor BioPharma.

B510	701	98.22871 96.9482791	1.639503	50			-				6
B510	730	131.13351 131.5068252	0.139364	0							
B510	758	180.16504 176.5186847	13.29591	0	200	400	600	800	1000		
B510	780	220.1019 222.4530037	5.527689								

Dutput

	A	В	C	D	E	F	P Q	R		S	Т
1	Channe	eline	Cell R	er File	Back Iol	DIVa					
2	Channe -	21 6206	PMIV -	TSU - E6	A06 1777044				rSD	EN	Х
0 4	11////6	21.0390	475	326	349 2425090	2400		⊢			
* 5	UV515	22.9403	700	1633	427 8130206	428		I	-		
6	UV540	23,8383	712	1839	458 0696523	458		I		٢.	
7	UV585	24,7753	800	1536	515,9204677	516					
8	UV610	24,1575	791	1210	541,786093	542					
9	UV660	23.9087	763	407	604.6006288	605					
0	UV695	24.7015	826	394	661.8576721	662					
11	UV736	22.7469	555	123	505.3468945	505					
12	UV809	22.3807	588	101	553.3766579	553					
13	V427	17.9221	600	57	594.7086934	595					
14	V450	18.1677	593	66	576.0582698	576					
15	V470	18.1999	720	64	/02.8/4//01	703					
10	V510	19.2999	515	44	539.33159	539					
10	V040 V576	10.0147	030	00	535.6644752	530					
19	V595	18 717	624	104	569 7455565	570					
20	V615	18,7983	666	138	584.0911578	584					
21	V660	18.4823	688	118	616.8776704	617					
22	V680	18.8644	707	117	636.1147195	636					
23	V710	18.0031	638	60	627.6047578	628					
24	V750	19.1974	440	40	465.6173133	466					
25	V785	20.8359	453	38	488.3110289	488					
26	V845	18.3085	470	36	499.6425012	500					
27	B510	17.9234	640	85	592.5078642	593					
28	B537	18.05/4	554	51	502.3114304	502					
50	B602	22.0014	542	45	573 30/611/	573					
1	B660	18 947	649	40	676 997993	677					
32	B675	19.2745	640	45	661.6959643	662					
33	B710	19,1981	631	38	667.0492989	667					
34	B750	18.1962	454	31	493.6932067	494					
85	B810	17.4052	476	32	511.8284777	512					
36	YG585	18.3035	638	28	703.0519794	703					
37	YG602	17.6844	585	28	641.7142373	642					
8	YG660	20.4769	637	35	686.4225208	686					
59	1G6/0	19.2586	6/8	54	684./831475	685					
11	VG720	10.0382	420	81	402 479700	402					
12	YG750	17 9710	429	10	514 8973492	492					
43	YG780	18.6264	395	19	462.4517217	462					
14	YG825	19.6755	440	20	515.1549569	515					
15	R660	15.5593	669	22	741.1215486	741					
6	R675	14.9061	658	22	728.1273455	728					
47	R680	15.6288	644	24	709.2941952	709					
8	R710	16.2368	444	17	514.6784176	515					
19	R730	14.6676	416	14	490.7402655	491					
00	R780	15.3964	388	16	451.675845	452					
52				•			➡				
53	Cop	y Cell	Ref			Conv P	MTV back	1			
54 55	PM	- ITV fre	om 🗍	Con	v Cell Ref						
56		4		Cob		into in	strument				
57	Instrument			rs	Trom	setting	s file and				
9	settings file			St	atistics	imnoi	t in Diva				
20		~									

Summary and guidance

The System equalizer approach provides a fast and accurate approach to set-up the cytometer at a desired target rSD:

- Using traditional Voltration for PMT setting across multiple systems, it has been determined that we reach >75% SI at a target of 3x rSDEN for unstained cells, which is within the range of selected PMT voltage using inflection point identification
- Adjusting PMT voltages to reach a calculated and defined rSD target provides a more consistent approach to PMT setup compared to traditional visualization of a curves inflection points that is subject to individual bias.
- This new approach to set PMT voltages creates detector-specific calibration curves for all channels from a single reference file recording without the need for multiple file acquisition for each individual channel.
- Setting PMTs to a target rSD can be performed manually, however, this requires the recording of multiple reference files per detector to "zero in" on the target rSD
- The system equalizer using macros and software automation results in an easier workflow for labs to setup assay specific PMTs or set PMTs post service or other system modification.
- The only requirement for setup is reference cells that are commonly available in laboratories.
- Cells with different autofluorescence could benefit from cell-type specific settings. It is possible to create multiple instrument settings with a simple acquisition of each unique cell type i.e. PBMC, Hepatocytes, Skin.

BD Biosciences

Class 1 Laser Product. For Research Use Only. Not for use in diagnostic or therapeutic procedures. BD, the BD Logo and FACS are trademarks of Becton, Dickinson and Company or its affiliates. © 2024 BD. All rights reserved. BD-120568 (v1.0) 0524

