

Using spectral flow cytometry and BD Horizon RealYellowTM and BD Horizon RealBlueTM Reagents to dissect the expression of metabolic proteins in resting and activated T cells

> Gisele Baracho, Guo-Jian Gao, Stephanie Widmann, Aaron Tyznik BD Biosciences, San Diego, CA 92121

Donor 2

 -10^3 0 10^3 10^4

-FMO - CPT1A^{low} - CPT1A^{high}

HK1 BUV661

 $-10^3 0 10^3 10^4 10^5$

TKT RB780

CD14 APC

Abstract

In response to activation, T cells undergo metabolic adaptations to meet the energetic and biosynthetic demands required for their rapid cell growth and proliferation. T cell receptor (TCR) engagement and CD28 costimulation trigger the initial metabolic changes that support T cell activation including increase in glucose uptake. PI3K signaling is critical for upregulation of GLUT-1, the main glucose receptor in T cells. In this study, we describe an assay for detection of GLUT-1 and key metabolic enzymes using fluorochrome-conjugated antibodies that have been validated for flow cytometry. Our analyses showed a broad expression of GLUT-1 and other metabolic markers across human immune cell populations. In T cells, GLUT-1 was expressed in resting T cells and upregulated in response to anti-CD3/CD28 stimulation. GLUT-1^{high} cells were found among CD69⁺ activated T cells, which also showed higher expression levels of glucose-6-phosphate dehydrogenase (G6PD) compared to the CD69⁻ cells. Notably, the PI3K inhibitor Ly294002 abrogated the upregulation of GLUT-1 and G6PD expression in activated CD69⁺ T cells. Ly294002 cell treatment did not affect the expression of hexokinase 1 (HK1), CD69, PD-1 or CD25, suggesting that PI3K inhibition impacted the expression of select metabolic proteins and not overall T cell activation. These results support literature evidence showing the importance of the glycolytic pathway on T cell activation while demonstrating optimized experimental conditions for resolution of multiple metabolic proteins.

Results (1)

1A Identification of immune cell subsets with a 30-color panel

1B Assessment of metabolic proteins in immune cell subsets

Immature NK

Mature NK

Methods

Cell preparation and staining

- 1. Freshly isolated peripheral blood mononuclear cells (PBMC) were stained with a cocktail of antibodies against surface markers and BD Horizon[™] Fixable Viability Stain UV440. The cells were fixed with BD Cytofix/CytopermTM Fixation Buffer for 20 min at 4 °C prior to 1 hintracellular staining in BD Perm/WashTM Buffer with antibodies against five metabolic proteins and granzyme B
- 2. PBMCs were cultured overnight in four different conditions: a) media alone (resting condition); b) stimulated with DynabeadsTM anti-CD3/CD28 in a 0.5:1 ratio; c) Dynabeads[™] anti-CD3/CD28 plus 50 μM Ly294002; d) Dynabeads[™] anti-CD3/CD28 plus 6 mM 2-Deoxy-D-glucose (2-DG).

Assessment of metabolic proteins

Prior to multicolor staining, antibody titrations were performed as demonstrated below (optimal concentration indicated by the gray box). Matching isotype controls were utilized to determine the contribution of nonspecific background. Stain index values were calculated using median of fluorescence of the positive population (metabolic protein stain) and median of fluorescence and standard robust deviation of the negative population (isotype control).

with high background staining. C) Bar graphs showing relative expression of metabolic proteins as determined by stain index calculations. **D)** The heatmap displays average stain index values of two donors. A higher stain index value (dark red) represents greater separation between positive and isotype background. E) Classical monocytes are further subdivided based on differential expression of CPT1A, HK1 and TKT.

Restec

GLUT-1 AF488

30-color immunophenotyping panel

				/1 01					
A	\5 SE	Fluor	Broad panel	Clone	Purpose	24-	color T-	cell activ	ation pan
	UV379	BUV395	G6PD	EPR6292	Oxidative pentose phosphate pathway		A5 SE	Eluor	T cell pap
	UV446		FVS440UV		Viability				
	UV515	BUV496	HLA-DR	G46-6	Dendritic cells and activated T cells subsetting		00379	BUV395	G6PD
	UV540		AutoF		Autofluorescence measurement		UV446		FVS440U
	UV585	BUV563	CD45	HI30	Leucocyte identification		UV515	BUV496	HLA-DR
	UV610	BUV615	CD45RA	HI100	Distinction between naïve and memory T cell subsets		UV540		AutoF
	UV660	BUV661	HK1	EPR10134(B)	Glycolysis		LIV610	BUN/615	
	UV736	BUV737	CD27	M-T271	T and B cells subsetting			BUV015	
	UV809	BUV805	CD19	HIB19	B cells identification		07660	BUV661	HK1
	V427	BV421	CD197	2-L1-A	Distinction between naïve and memory T cell subsets		UV736	BUV737	CD27
	V450	V450	CPT1A	8F6AE9	Fatty-acid synthesis		UV809	BUV805	CD69
	V470	V480	CD38	HB7	T and B cells subsetting		V427	B\/421	CD197
	V510	BV510	TCR Cb1	JOVI.1	Distinction between TCR heavy chain b1 and b2		V450)/450	
	V576	BV570	CD3	UCHT1	T cells identification		V430	V450	CPITA
	V615	BV605	CD56	R19-760	NK cells identification		V470	V480	CD38
	V680	BV650	CD127	HIL-7R-M21	Regulatory T cells identification		V510	BV510	TCR Cb1
	V710	BV711	lgM	G20-127	B cells subsetting		V576	BV570	CD3
	V750	BV750	CD16	3G8	NK cells and monocytes subsetting		V615	B\/605	CD56
	V785	BV786	CD279	NAT105	Analysis of immunocheckpoint regulator		V690	D V000	
	B510	AF488	GLUT-1	EPR3915	Glucose uptake		V00U	B 7620	CD127
	B537	RB545	GZMB	GB11	NK and T cell activation		V750	BV750	CD16
	B602	BB630	CD4	SK3	CD4 T helper cells identification		V785	BV786	CD279
	B660	BB660	lgD	IA6-2	B cells subsetting		B510	AF488	GLUT1
	B6/5	PerCP	CD8	SK1			B537	RB545	GrzmB
	B/10	BB700	CD123	/G3	Plasmacytoid dendritic cells and basophils identification		B602		
	B810	RB780	IKI	/H1AA1	Non-oxidative pentose phosphate pathway		B002	BB030	CD4
	YG 585	PE	CD11c	B-ly6			B675	PerCP	CD8
	TG602	K Y 586	CD25	ZA3			B810	RB780	ТКТ
	R00U	APC	CD14	IVIDE2	IVIONOCYTES SUBSEtting		YG602	RY586	CD25
	R/30			L293			R660	ΔΡΟ	
	K/0U	APC-H/	CD20	211/	B cells subsetting		D720	D710	
							<u> </u>	R/10	UD28

A5 SE, BD FACSymphony[™] A5 SE Cell Analyzer; BUV, BD Horizon Brilliant[™] Ultraviolet; BV, BD Horizon Brilliant[™] Violet; V BD Horizon^{1M} Violet; BB, BD Horizon Brilliant^{1M} Blue; RB, BD Horizon RealBlue^{1M}; RY, BD Horizon RealYellow^{1M}; R, BD HorizonTM Red; AF, Alexa FluorTM

2A GLUT-1 upregulation in activated T cells CD4 T Cells CD8 T Cells CD69 BUV805 CD69 BUV805

Figure

activated CD69⁺

of GLUT-1⁺G6PD⁺ cells.

GLUT-1 AF488

GLUT-1 AF488

GLUT-1 AF488

2B Effect of PI3K and glycolysis inhibition on T cell activation

low-to-high

Figure 2: Analysis of T cell activation and metabolic status upon TCR stimulation with anti-CD3/CD28 beads. A) Histogram overlays depict the expression of the activation marker CD69 and the glucose transporter (GLUT-1) after overnight cell stimulation. B) Expression of the activation marker CD25, GLUT-1 and GZMB on different T cell subsets following cell stimulation in the presence of either a PI3K inhibitor (Ly294002) or glycolysis inhibitor (2-DG). GLUT-1 upregulation occurs predominantly on naïve and central memory cells (newly activated cells) and Ly294002 disrupted GLUT-1 upregulation in CD4 and CD8 T cell subsets while glycolysis inhibition only partially impacted GLUT-1 upregulation. PI3K inhibition also affected GZMB expression in CD8 T cell subsets.

GLUT-1 AF488

- Cellular metabolism is crucial for the activation and specialized functions of immune cells. Here we offer tools and strategies for a comprehensive analysis of metabolic proteins in a variety of cell subsets:
 - 1. Five clones for flow cytometry applications and specific for catabolic or anabolic pathways (GLUT-1 - EPR3915; G6PD - EPR6292; HK1 - EPR10134(B); CPT1A - 8F6AE9 and TKT - 7H1AA1).
 - 2. Buffer system and protocol that allow concomitant measurement of these five metabolic proteins. Also, we show an approach for reagents' titrations and application

The curves show normalized spectral emission of three new BD Horizon[™] Fluorochromes. Scores calculated on BD[®] Spectrum Viewer indicate that BD HorizonTM RB545 and Alexa FluorTM 488 Dyes have distinct spectral profiles (low score of 0.63). In contrast, BD HorizonTM RY586 and PE Dyes have higher spectral overlap (high score of 0.9) and were carefully used in the 30-color panel to minimize impact from spillover spreading.

of isotype controls for accurate measurements in diverse populations.

3. New instrumentation (BD FACSymphonyTM A5 SE Cell Analyzer) and fluorochromes (BD HorizonTM RB545, RB780 and RY586) for panel expansion from 24 to 30 colors.

• T cell activation leads to dramatic shifts in cell metabolism from oxidative phosphorylation to aerobic glycolysis. To measure such changes in vitro, we evaluated specially the expression of the glucose transporter GLUT-1. We detected GLUT-1 upregulation in activated cells. This process was disrupted by PI3K inhibition demonstrating the relevance of this signaling pathway for the uptake of nutrients (glucose) during cell activation. Importantly, PI3K inhibition led to the loss of a GZMB⁺ functional CD8 T cell population. Feeding the cells with 6 mM of a glucose analog (2-DG) that cannot be metabolized only partially affected T cell populations.

Class 1 Laser Product. For Research Use Only. Not for use in diagnostic or therapeutic procedures. BD, the BD Logo, BD FACSymphony, BD Horizon Brilliant, BD Horizon RealBlue, BD Horizon RealYellow, Cytofix/Cytoperm, FlowJo, Horizon and Perm/Wash are trademarks of Becton, Dickinson and Company or its affiliates. All other trademarks are the property of their respective owners. © 2023 BD. All rights reserved. BD-87507 (v1.0) 0423 Alexa Fluor is a trademark of Life Technologies Corporation