Use of standardized lyophilized reagents to develop a functional Tcell signature

John F. Dunne, PhD Assoc. Scientific Director BD Biosciences

Functional T cell responses to tumor antigens in breast cancer patients have a distinct phenotype and cytokine signature

Margaret Inokuma1, Corazon dela Rosa2, Charles Schmitt3, Perry Haaland3, Janet Siebert4, Douglas Petry1, MengXiang Tang1, Maria A. Suni1, Smita A. Ghanekar1, Daiva Gladding1, John F. Dunne1, Vernon C. Maino1, Mary L. Disis2, and Holden T. Maecker1

- 1. BD Biosciences, 2350 Qume Drive, San Jose, CA 95131
- 2. University of Washington, 815 Mercer Street, Seattle, WA 98109
- 3. BD Technologies, 21 Davis Drive, Research Triangle Park, NC 27709
- 4. CytoAnalytics, 1080 Bonnie Brae Blvd., Denver, CO 80209
- J Immun, 2007, 179: 2627-2633

http://maeckerlab.typepad.com/

Cell Analysis in Drug Development Process - Step #1

1. NCE Selection

Preclinical activities aimed at screening, designing & optimizing the new chemical entity or biological agent that will interact with the drug target Discovery & pre-clinical work to identify & narrow a field of potential therapeutic agents to a single new chemical entity (NCE) or biologic compound.

Usage commonly falls along the typical drug discovery workflow:

Cell analysis techniques are most commonly used to test binding specificities of agents and illuminate basic disease mechanisms of action (MOA)

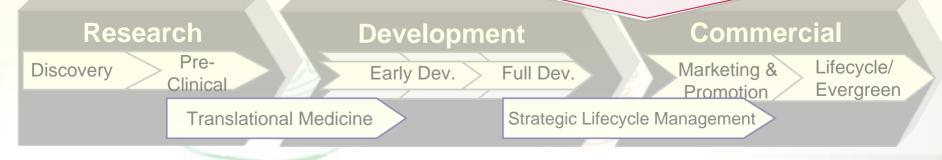
Cell Analysis in Drug Development Process - Step #2

2. Pharmacodynamics

Preclinical and/or clinical studies of the biochemical & physiological effects of a drug, its mechanisms of action, and the relationship between drug dosage & effect on the body Evaluates the interactions between an optimized drug candidate and a biological system.

Includes drug development activity as early in the pipeline as target validation and as late as dose-ranging & early efficacy.

Typical cell analysis applications in this area include cell signaling (e.g. Phosflow[™] and Lyoplates)


Cell Analysis in Drug Development Process - Step #3

If successful, these clinical trials would demonstrate the safety and/or efficacy benefit of a "companion diagnostic" that prescreens potential patients and/or monitors their progress during treatment.

These trials could be conducted both pre- and post-approval of the underlying therapeutic. Cell analysis applications here are largely customized and are developed in partnership with the therapeutic company's development organization

3. Patient Profiling

Clinical trials designed to determine if and how the phenotypes of individual patients or groups influence response to a given therapy. If successful, these trials would establish the need for new pre-treatment screening and/or therapeutic monitoring assays for this indication.

Cellular Analysis in Clinical Trials

This presentation will focus on addressing the need for;

- Applying the use of biomarkers in drug development
- Standardizing cellular assays across multiple sites
- Assay and data analysis criterion
- Monitoring immune function
- Cellular Biomarkers of Disease progression (Cancer and HIV)

Why collect and analyze blood?

- You can get it
- It shows immunological memory
- It is a systemic organ
- We can measure it in detail

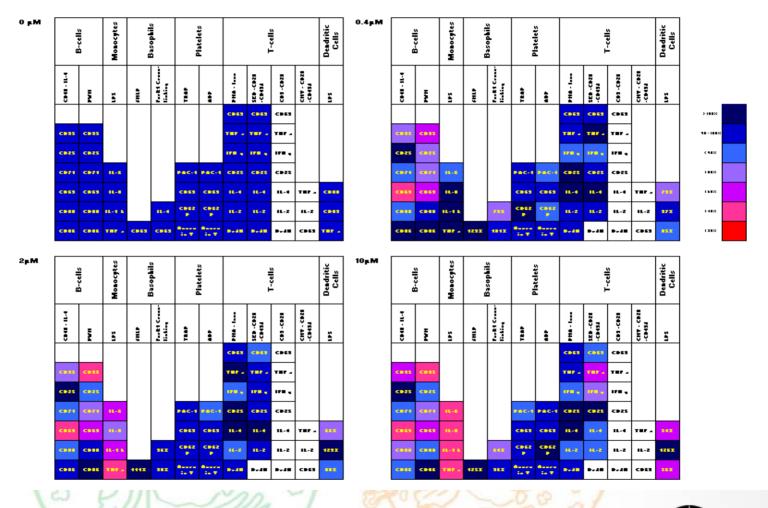
Response Profiles Can Be Very Rich

B-cells		Monocytes	Basonhils			Platelets T-cells		T-cells				Dendritic Cells
CD40 + IL4	PWM	SdT	fMLP	FceR1 Cross-linking	TRAP	Epinephrine	ACD	PMA + Iono	SEB +CD28	CD3 +CD28	CMV + CD28 + CD49d	ILPS
CD95	CD95							TNF a	TNF a	TNF a		
CD25	CD25							IFN g	IFN g	IFN g		
CD71	CD71	IL-6			PAC-1	PAC-1	PAC-1	CD25	CD25	CD25	IFN g	
CD69	CD69	IL-8			AnxV	AnxV	AnxV	IL-4	IL-4	IL-4	TNF a	CD80
CD80	CD80	IL-1 b	IL-4	IL-4	CD62	CD62	CD62	IL-2	IL-2	IL-2	IL-2	CD86
CD86	CD86	TNF a	CD63	CD63	CD63	CD63	CD63	BrdU	BrdU	BrdU	CD69	TNF a

BD

9

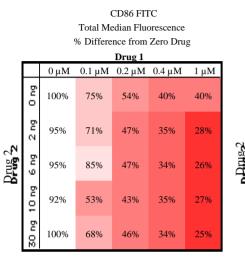
Leukocyte Response Profiles


• Describe drugs

- to characterize the effect of an inhibitor on a molecular pathway
- to recognize the pleiotropy of that pathway
- Describe people
 - to recognize genetic or environmental polymorphisms
 - to characterize the summed effect of a complicated therapeutic regimen

Typical Blood Profile

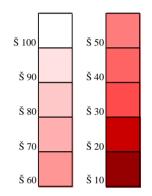
Herbimycin A



BD

11

Effect of Coincubation of Two Immunosuppressive Drugs On T cell and B cell Markers



	CD95 APC												
	Total Median Fluorescence												
	% Difference from Zero Drug												
	Drug 1												
		0 µ M	0.1 µM	$0.2\mu M$	$0.4\mu M$	1 µM							
	0 ng	100%	96%	86%	62%	59%							
	2 ng	81%	79%	67%	54%	45%							
vr uyoz	6 ng	81%	79%	69%	58%	41%							
-	10 ng	80%	71%	64%	56%	44%							
	30 ng 10 ng	86%	79%	70%	57%	40%							

CD54 PE Total Median Fluorescence % Difference from Zero Drug Drug 1

		Drug 1										
		0 µM	$0.1\mu M$	$0.2\mu M$	$0.4 \mu M$	1 µM						
	6u ()	100%	85%	66%	48%	49%						
2	2 ng	82%	72%	55%	41%	31%						
Drug 2	6 ng	79%	82%	53%	40%	25%						
	10 ng	74%	55%	48%	37%	28%						
	50 D2	74%	66%	49%	37%	24%						

IFNg Median Fluorescence of Positives % Difference from Zero Drug

				Drug 1		
		0 µM	0.1 µM	0.2 µM	0.4 µM	1 µM
	0 ng	100%	83%	64%	37%	15%
	2 ng	80%	68%	51%	36%	17%
Drug 2	6 ng	89%	71%	59%	35%	17%
	10 ng	82%	66%	50%	35%	14%
	30 ng 10 ng	95%	75%	58%	39%	18%

IL-2 Median Fluorescence of Positives % Difference from Zero Drug

		Drug 1									
		0 µM	0.1 µM	0.2 µM	0.4 µM	1 µM					
	0 ng	100%	89%	77%	59%	43%					
	2 ng	94%	88%	75%	57%	49%					
βru§ ≥	6 ng	96%	91%	77%	60%	46%					
	10 ng	94%	90%	77%	63%	50%					
4	30 ng	104%	94%	78%	62%	41%					

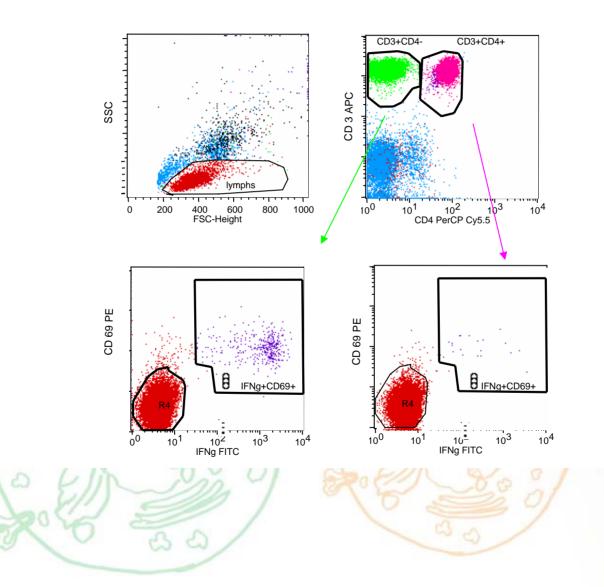
TNFa Median Fluorescence of Positives % Difference from Zero Drug

i		Drug 1									
		0 µM	0.1 µM	0.2 µM	0.4 µM	1 µM					
	0 ng	100%	67%	50%	27%	23%					
5	2 ng	81%	54%	43%	25%	13%					
Drug 2	6 ng	93%	61%	43%	26%	14%					
3	10 ng	75%	60%	38%	28%	16%					
2	50 DG	83%	63%	43%	28%	14%					
		0	2		2	9					

BD

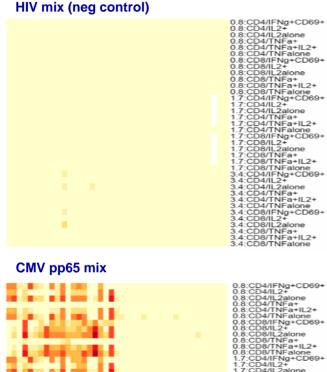
12

Cytokine Flow Cytometry Baseline Study


Lyophilized stimulation plate

										her2/neu	
	CD28+49d	pp65 mix	IE mix	A2 CMV pep	B7 CMV pep	flu HA+M1	HIV gag mix	CEA mix	MAGE-3 mix	ICD mix	
blank	1 ug/ml ea	3.4 ug/ml	3.4 ug/ml	1 ug/ml	1 ug/ml	3.4 ug/ml	3.4 ug/ml	3.4 ug/ml	3.4 ug/ml	3.4 ug/ml	CEF
	CMV lysate									her2/neu	
	1 ug/ml	pp65 mix	IE mix	A2 CMV pep	B7 CMV pep	flu HA+M1	HIV gag mix	CEA mix	MAGE-3 mix	ICD mix	
BFA	+CD28/49d	1.7 ug/ml	1.7 ug/ml	0.2 ug/ml	0.2 ug/ml	1.7 ug/ml	1.7 ug/ml	1.7 ug/ml	1.7 ug/ml	1.7 ug/ml	CEF
										her2/neu	
		pp65 mix	IE mix	A2 CMV pep	B7 CMV pep	flu HA+M1	HIV gag mix	CEA mix	MAGE-3 mix	ICD mix	PMA 10 ng+
DMSO cntl	BFA	0.8 ug/ml	0.8 ug/ml	0.04 ug/ml	0.04 ug/ml	0.8 ug/ml	0.8 ug/ml	0.8 ug/ml	0.8 ug/ml	0.8 ug/ml	ion 1 ug/ml
										her2/neu	
	CD28+49d	pp65 mix	IE mix	A2 CMV pep	B7 CMV pep	flu HA+M1	HIV gag mix	CEA mix	MAGE-3 mix	ICD mix	SEB
DMSO cntl	1 uɑ/ml ea	0.4 ua/ml	0.4 ua/ml	0.008 ua/ml	0.008 ua/ml	0.4 ua/ml	0.4 ua/ml	0.4 ua/ml	0.4 ua/ml	0.4 ua/ml	1 ua/ml
										her2/neu	
	CD28+49d	pp65 mix	IE mix	A2 CMV pep	B7 CMV pep	flu HA+M1	HIV gag mix	CEA mix	MAGE-3 mix	ICD mix	
blank	1 ug/ml ea	3.4 ug/ml	3.4 ug/ml	1 ug/ml	1 ug/ml	3.4 ug/ml	3.4 ug/ml	3.4 ug/ml	3.4 ug/ml	3.4 ug/ml	CEF
	CMV lysate									her2/neu	
	1 ug/ml	pp65 mix	IE mix	A2 CMV pep	B7 CMV pep	flu HA+M1	HIV gag mix	CEA mix	MAGE-3 mix	ICD mix	
BFA	+CD28/49d	1.7 ug/ml	1.7 ug/ml	0.2 ug/ml	0.2 ug/ml	1.7 ug/ml	1.7 ug/ml	1.7 ug/ml	1.7 ug/ml	1.7 ug/ml	CEF
										her2/neu	
		pp65 mix	IE mix	A2 CMV pep	B7 CMV pep	flu HA+M1	HIV gag mix	CEA mix	MAGE-3 mix	ICD mix	PMA 10 ng+
DMSO cntl	BFA	0.8 ug/ml	0.8 ug/ml	0.04 ug/ml	0.04 ug/ml	0.8 ug/ml	0.8 ug/ml	0.8 ug/ml	0.8 ug/ml	0.8 ug/ml	ion 1 ug/ml
										her2/neu	
	CD28+49d	pp65 mix	IE mix	A2 CMV pep	B7 CMV pep	flu HA+M1	HIV gag mix	CEA mix	MAGE-3 mix	ICD mix	SEB
DMSO cntl	1 ug/ml ea	0.4 ug/ml	0.4 ug/ml	0.008 ug/ml	0.008 ug/ml	0.4 ug/ml	0.4 ug/ml	0.4 ua/ml	0.4 ug/ml	0.4 ug/ml	1 ug/ml

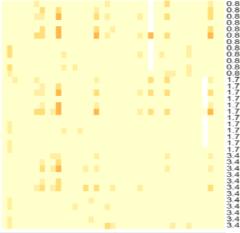
BD


Lyophilized staining plate TNFα FITC / IL-2 PE /CD4 PerCP-Cy5.5 /CD3 APC

Cytokine Gating

BD

Normal Donor Cytokine Responses - Controls



-400-401-004030-0-003014600010400-0000040-000

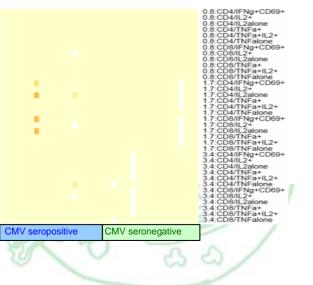
CMV sero

0.8 CCD8/TXFFa+IL2+ 0.8 CCD8/TXFFa+IL2+ 0.8 CCD8/TNFFa+IL2+ 0.8 CCD8/TNFFa+IL2+ 1.7 CCD4/IL2alone 1.7 CCD4/IL2alone 1.7 CCD4/IL7NFa+ 1.7 CCD4/TNFa+ 1.7 CCD8/TNFa+ 1.4 CCD4/TNFa+ 1.4 CCD8/IL2+ 0.4 CC

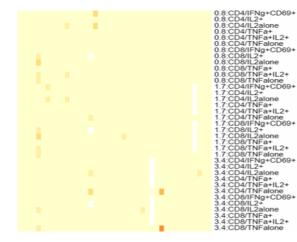
Flu HA+M1 mix

0.8:CD4/IFNg+CD69+ 0.8:CD4/IL2alone 0.8:CD4/IL2alone 0.8:CD4/IL2alone 0.8:CD4/TNFa+L2+ 0.8:CD4/TNFa+L2+ 0.8:CD8/IENg+CD69+ 0.8:CD8/IL2alone 0.8:CD8/TNFa+L2+ 0.8:CD8/TNFa+L2+ 0.8:CD8/TNFa+L2+ 1.7:CD4/IL2alone 1.7:CD4/IL2alone 1.7:CD4/IL2alone 1.7:CD4/INFa+L2+ 1.7:CD4/INFa+L2+ 1.7:CD4/INFa+L2+ 1.7:CD8/IL2+ 1.4:CD4/IL2alone 1.4:CD4/IIFNg+CD69+ 1.4:CD4/IL2alone 1.4:CD4/IIFNg+CD69+ 1.4:CD8/IL2+ 1.4:CD

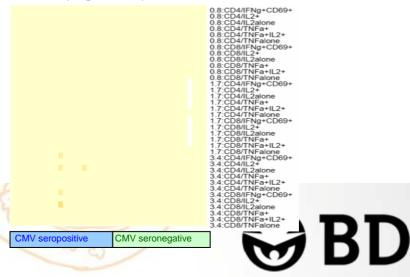
CMV seropositive CMV seropositive


Normal Donor Cytokine Responses to Cancer Antigen

Her2/neu mix



1.7:CD4/IL2+ 1.7:CD4/IL2alone 1.7:CD4/TNFa+ 1.7:CD4/TNFa+IL2+ 1.7:CD4/TNFalone 1.7:CD8/IFNa+CD69 1.7:CD8/IL2+ 1.7:CD8/IL2alone 1.7:CD8/TNFa+ 1.7:CD8/TNFa+IL2+ 1.7:CD8/TNFalone 3.4:CD4/IFNa+CD69 3.4:CD4/IL2+ 3.4:CD4/IL2alone 3.4:CD4/TNFa+ 3.4:CD4/TNFa+IL2+ 3.4:CD4/TNFalone 3.4:CD8/IFNg+CD69 3.4:CD8/IL2+ 3.4:CD8/IL2alone 3.4:CD8/TNFa+ 3.4:CD8/TNFa+IL2+ 3.4:CD8/TNFalone

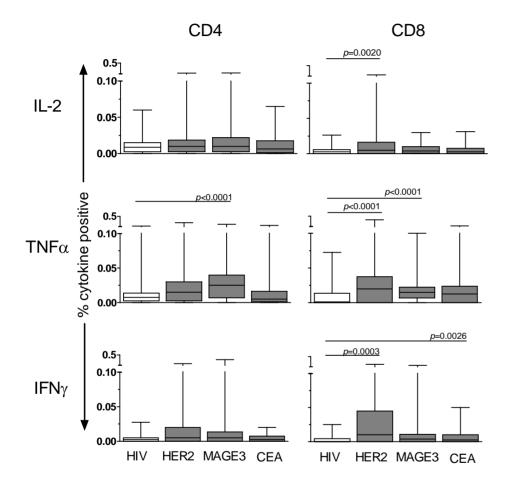

CEA mix

MAGE-3 mix

HIV mix (neg control)

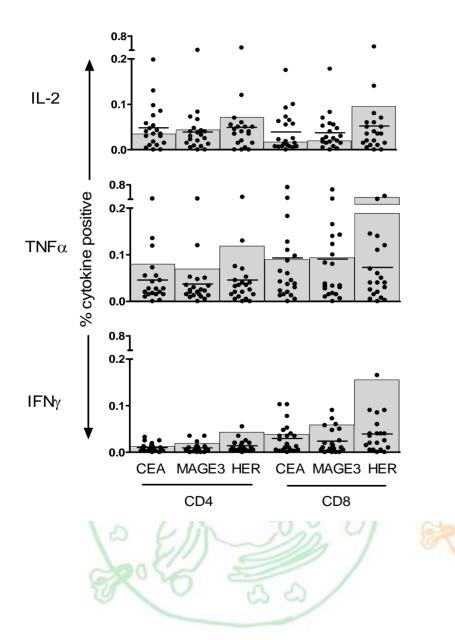
Summary CFC Baseline Study

Cytokine flow cytometry offers quantitative assessments of T-cell function


Healthy donors demonstrate correlation between CMV serology and CFC response to CMV peptides.

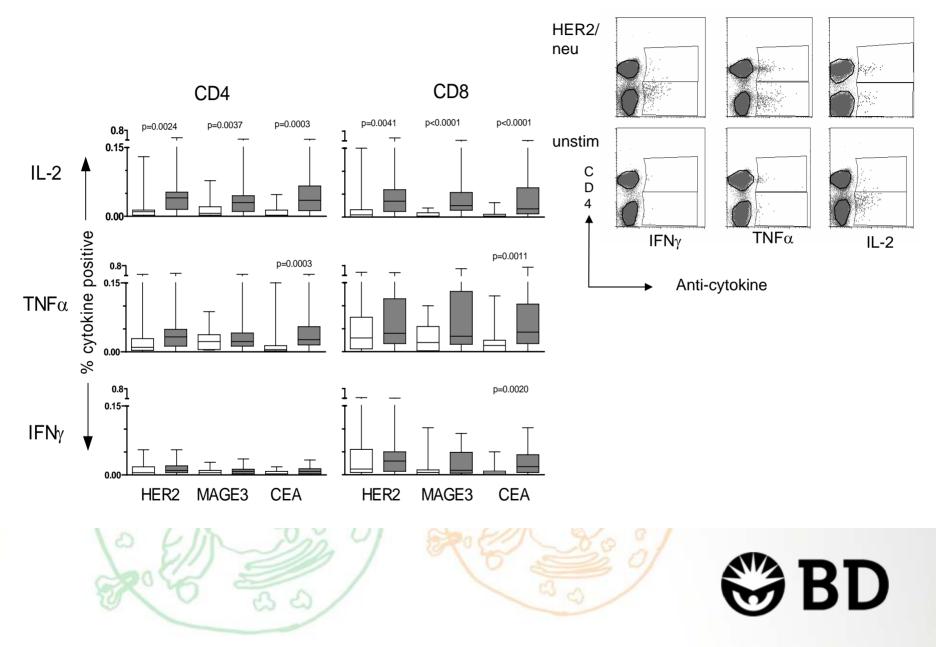
TNFα responses in CD4 and CD4- cells to Her2/neu and MAGE-3 were low but significantly different from neg control antigen.

IFN γ , TNF α and IL-2 responses to CEA was not significantly different from negative controls in healthy donors.

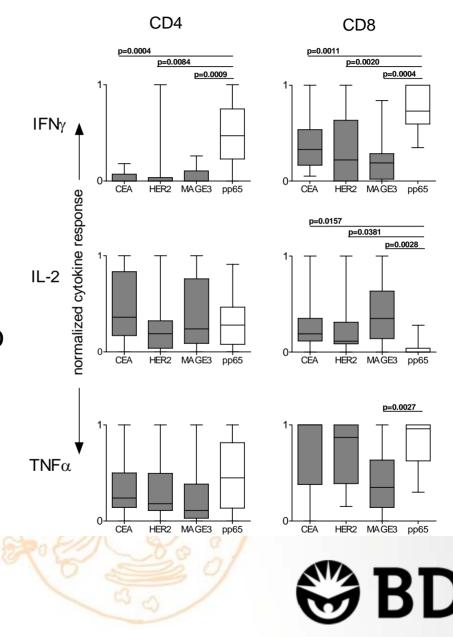

Healthy Donor Analysis of TAA by Flow

Percentage of cytokine producing cells in Tcell subsets

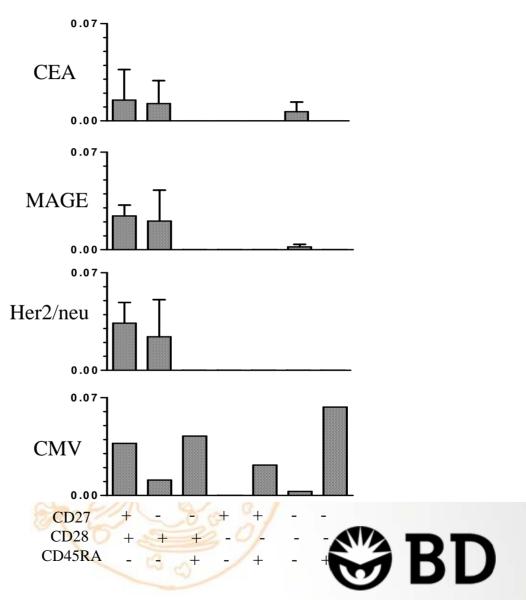
SD


Cytokine Responses in Breast Cancer Patients

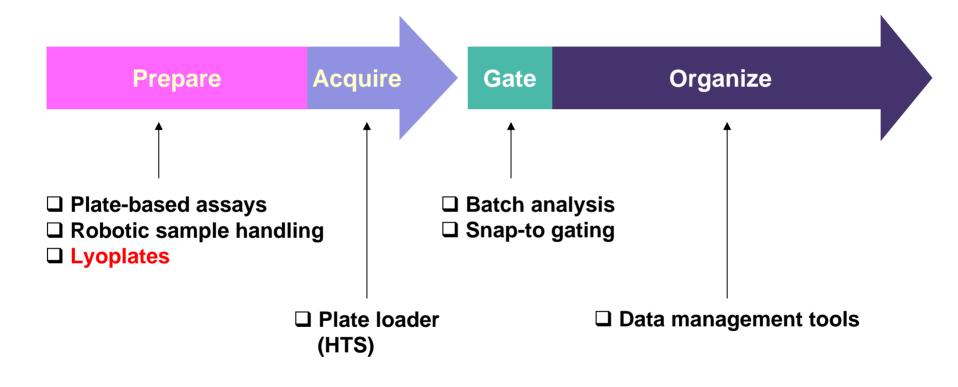
Percentage of cytokine producing cells in Tcell subsets


BD

Cytokine Responses in Breast Cancer Patients


Cytokine T-cell Responses to Antigenic Challenge

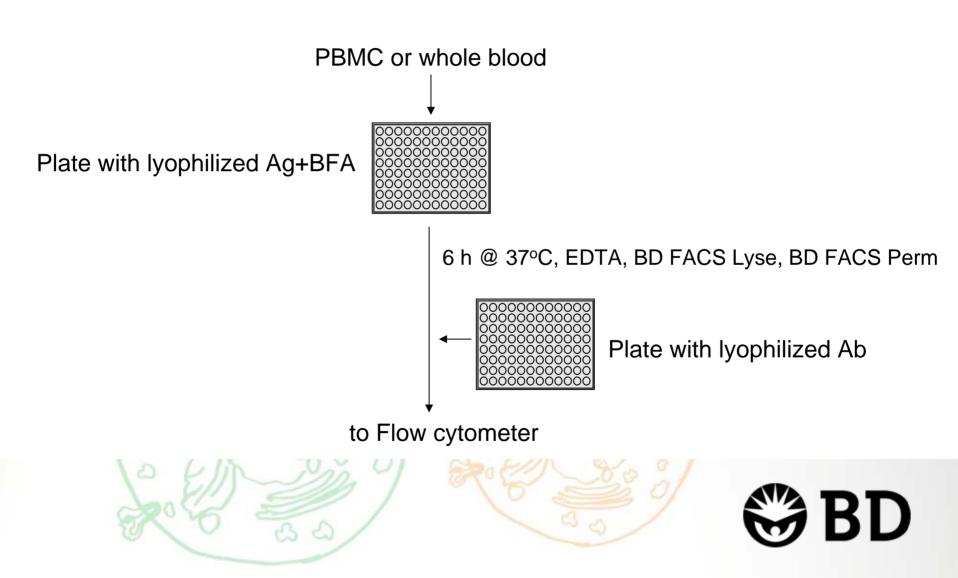
- Responses to CMV antigen in CMV seropositive without clinical disease
- Unsuccessful response to self antigen (TAA in breast cancer patients)



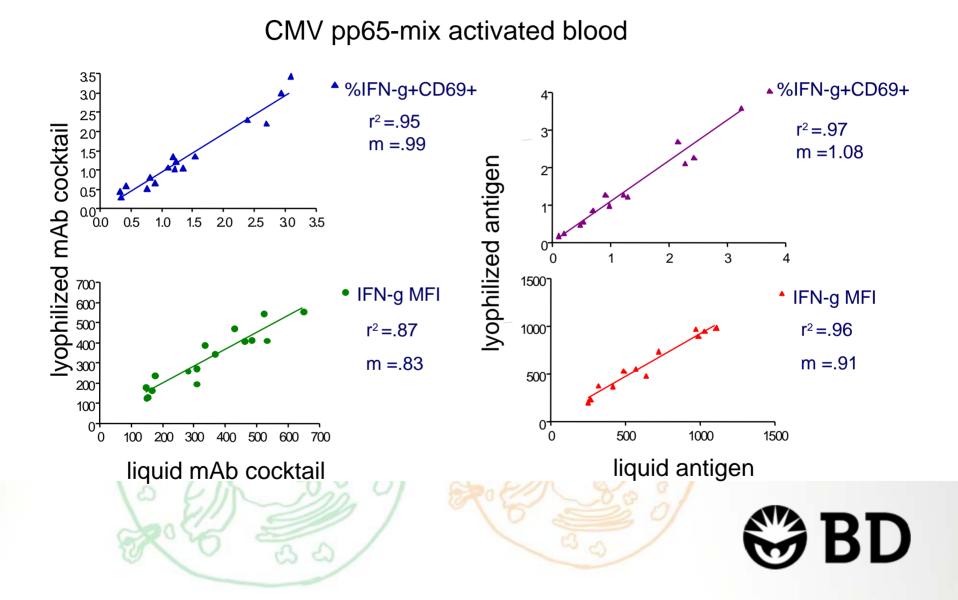
Effector and Memory T-cell Distribution in Cancer Patients

- •Immunophenotyping of Tcells responding to tumor associated antigens compared to CMV
- •Expression of IFNg and/or TNFa
- Data arranged from central memory to terminal effector

Consider the entire workflow

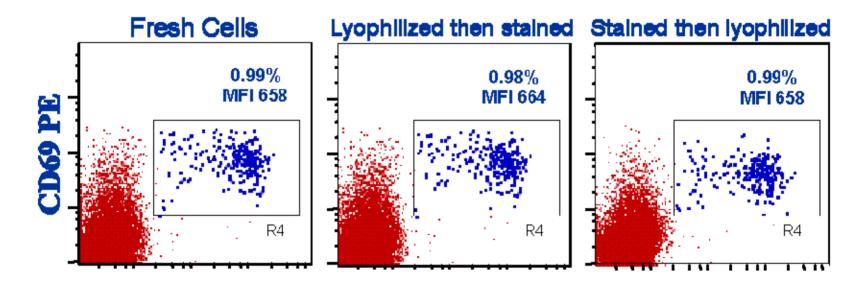


ThermoCRS Robotic Arm
Packard Pipetting Station
Velocity11 Centrifuge
Heat Block (Incubator)
BD FACSCalibur with plate loader


1100 0

1999

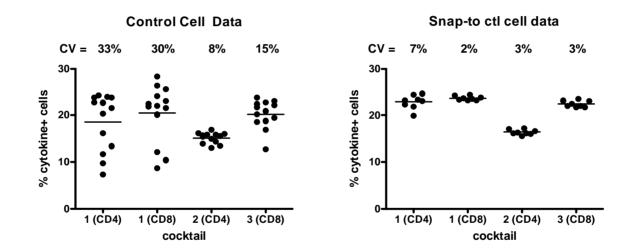
Liquid vs Lyophilized Reagents



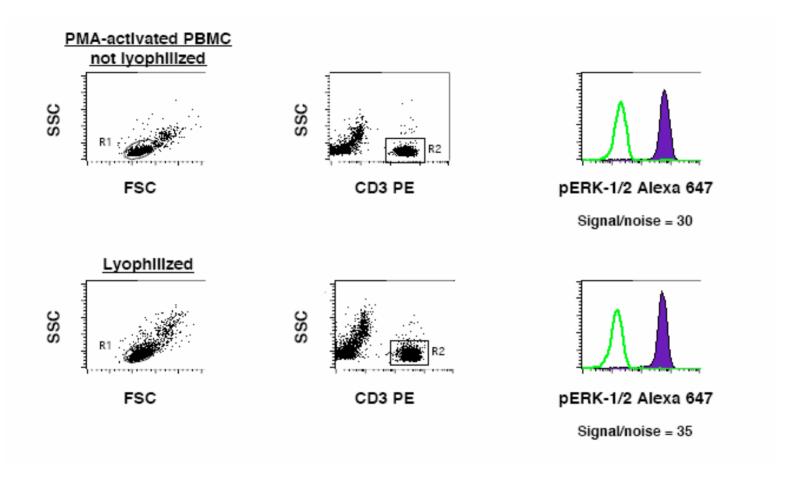
Multi-Site Data with BD Lyoplates

Assay Type	Fixed Activated Blood	Shipped Whole Blood	Cryopreserved PBMC	Cryopreserved PBMC with Lyoplates
Number of samples	12	12	24	9
Mean % CV	24%	31%	23%	18%

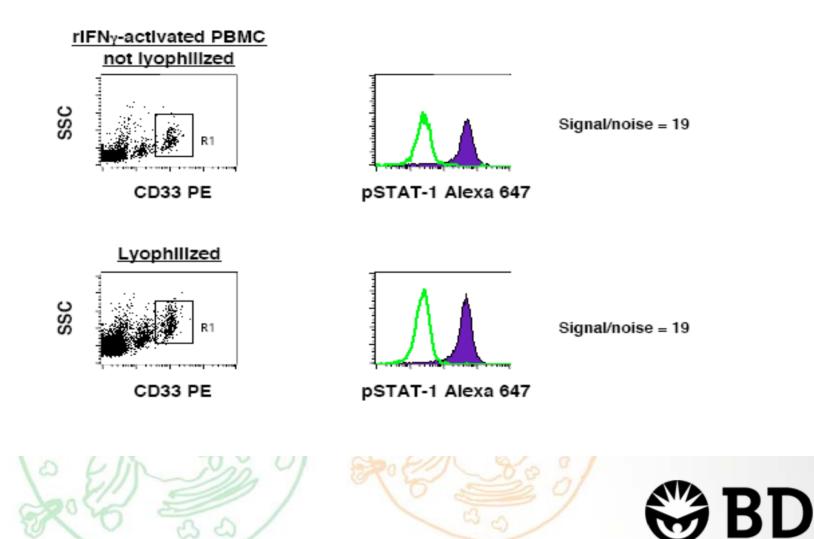
Cell Lyophilization for use as Controls



IFNy FITC

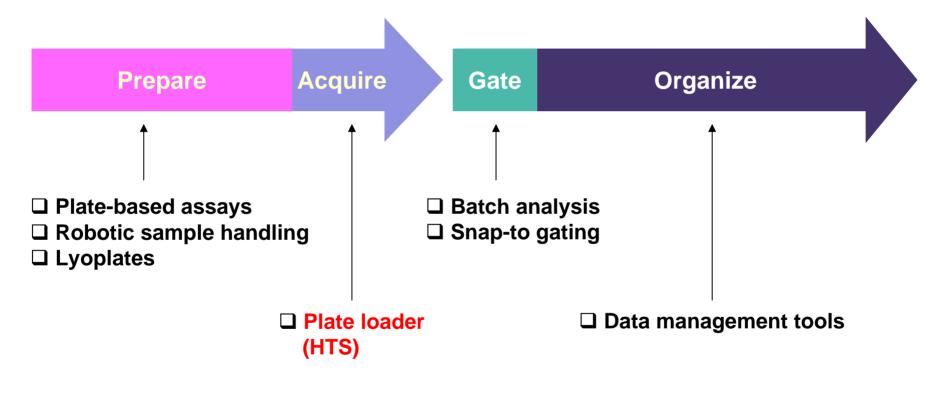

Data Management: Lyophilized Cells in a Multi Site Study is to cover

The title below



Lyophilized BD Phosflow Control Cells

Lyophilized BD Phosflow Control Cells


Custom BD Lyoplate Products

- Vessel configurations
 - Standard 96 well, polypropylene or polystyrene
 - 8-well strip plates, polystyrene
 - Deep well 96 polypropylene plates
 - Deep well 96 polypropylene individual 1ml vials
- Contents
 - Fluorochrome antibody conjugate cocktails
 - BD CBA beads
 - Peptide antigen cocktails
 - Polyclonal protein mitogens
 - Pharmacophores
 - Fixed/permed/stained instrument/data control cells

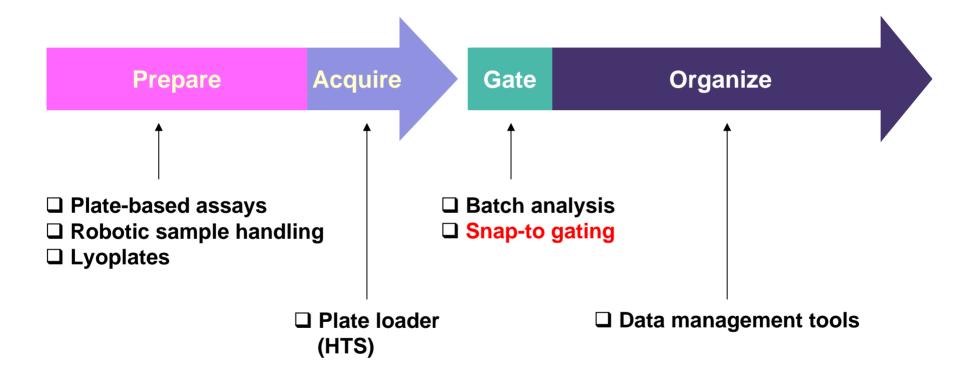
BD

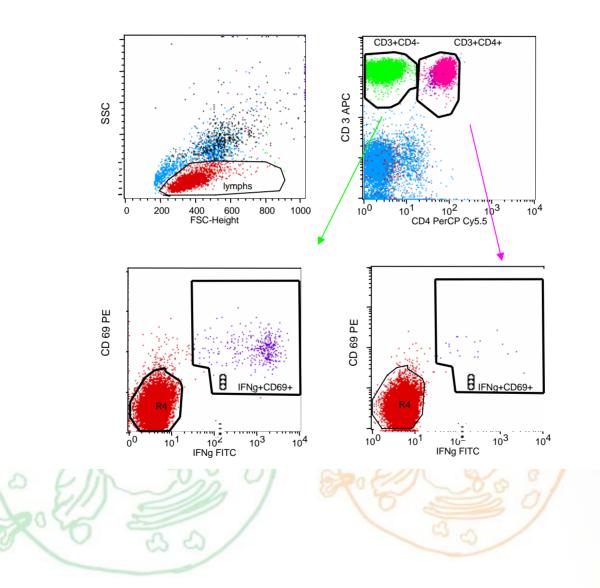
Fixed/permed unstained process control cells

Consider the entire workflow

High Throughput Sampler

High Throughput Sampler on BD FACSCanto II

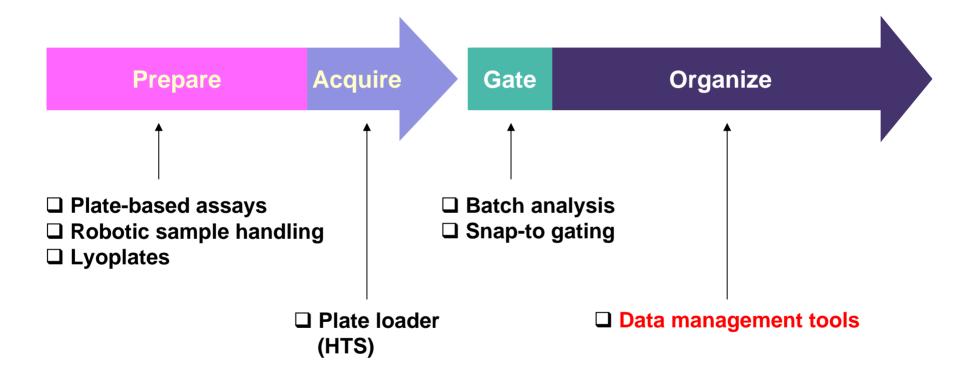

Plate manager software untitled 2 ... Layout Setup Acquire Analyze + Template:caNDplate Sampler Parameters Mode: Standard + -Data File Prefix Part #1 can Mixing Volume (µL) 100.0 Plate: BD 353263 - 96 V : Data File Prefix Part #2 041305 Mixing Speed (µL/sec) 180.0 Data File Prefix Part #3 504 Probe Wash Volume (µL) 800.0 F NDacganl Number of Mixes Acquisition Document Setup Standard Ö Analysis Document FL1 <multiple values> Sample -Instrument Settings instrset041305 • FL2 <multiple values> 100.0 FL3 CD4 PerCP-Cy5.5 . Sample Volume (uL) Ĩ 1.5 • FL4 CD3 APC Sample Rate (µL/sec) : Background: antigen 11 12 Legend 1 2 5 7 8 9 10 3 4 6 BEA 3 5 8 9 10 12 6 (11) CEA mx 0.8 ug/ml CEA mix 1.7 ug/ml CEA mix 3.4 ug/ml (17) (18) (19) (20) (21) (22) (23) (24) 15 13 14 16 B CNV A2 0.008 ug/m c (25) 26 27 (28) (29) (30) (31) (32) (33) (34) (35) (36) CNV A2 0.04 ug/ml CNV A2 0.2 un/ml CNV A2 1 ug/ml 38 39 40 41 42 43 44 45 46 47 48 D (37 CNV B7 0.008 ug/m CNV 87 0.04 ug/m E (49) 50 51 52 53 54 55 56 57 58 59 60 CNV B7 0.2 ug/ml CNV B7 T ug/ml **CNV** lysate 62 63 64 (65)(66)(67)(68)(69)(70) (71)



Consider the entire workflow

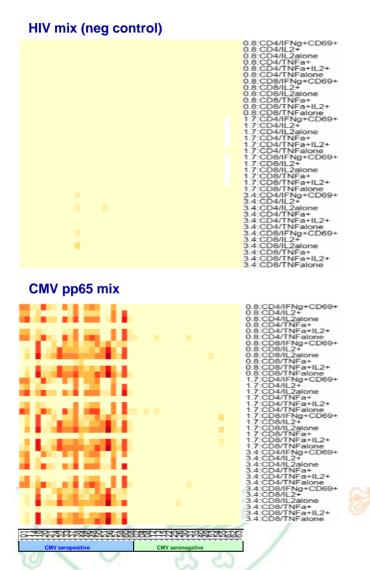


Automated Snap-to Gating

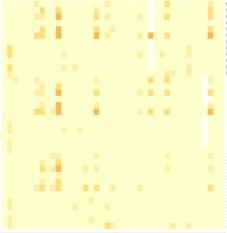


BD

Automated vs Manual Gating

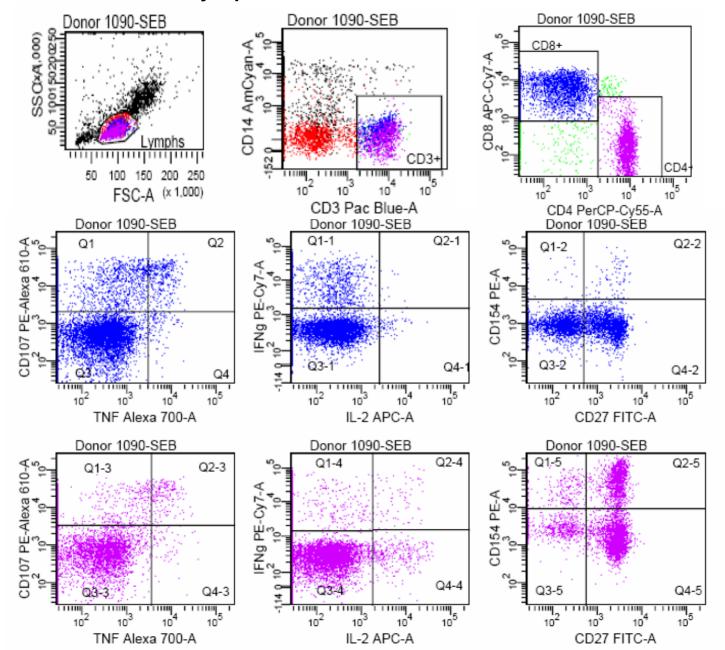


Consider the entire workflow



Normal donor cytokine responses, controls

Flu HA+M1 mix



0.8:CD4/IFNg+CD69+ 0.8:CD4/IL2alone 0.8:CD4/IL2alone 0.8:CD4/IL2alone 0.8:CD4/TNFa+L2+ 0.8:CD4/TNFa+L2+ 0.8:CD8/IENg+CD69+ 0.8:CD8/IL2alone 0.8:CD8/TNFa+L2+ 0.8:CD8/TNFa+L2+ 0.8:CD8/TNFa+L2+ 1.7:CD4/IL2alone 1.7:CD4/IL2alone 1.7:CD4/IL2alone 1.7:CD4/INFa+L2+ 1.7:CD4/INFa+L2+ 1.7:CD4/INFa+L2+ 1.7:CD8/IL2+ 1.4:CD4/IL2alone 1.4:CD4/IIFNg+CD69+ 1.4:CD4/IL2alone 1.4:CD4/IIFNg+CD69+ 1.4:CD8/IL2+ 1.4:CD

10 Color BD Lyoplates

BD

Lyophilized stimulation and staining reagents in a 96-well format provides standardization of assays.

Flow cytometer with 96-well plate loader reduces operator hands-on time.

Dynamic gating in flow analysis software reduces variability in data analysis.

Data management tools allow for manipulation of large data sets.

Applying Cell Analysis to Clinical Trials

- Cellular analysis is a very important tool in understanding drug response
- Monitor Immune function via blood is applicable to numerous disease states
- Flow Cytometry is a viable tool for clinical trials
- Assay standardization reduces CVs
- Centralized data analysis reduces assay variability
- May be applicable to pre-clinical, clinical trial and patient profiling
 Control to pre-clinical, clinical trial and Control to pre-clinical trial and Control to pre-clinical trial trial and Control to pre-clinical trial trial and Control to pre-clinical trial trial trial trial trial trial trial trial tr

Thanks

Acknowledgements

Immune Function Group

Maria Suni Smita Ghanekar Laurel Nomura Maria Jaimes Daiva Gladding Margaret Inokuma Holden Maecker Skip Maino

Database/Statistical Analysis

Eugene Veteska Janet Siebert Perry Haaland Charles Schmitt Dylan Wilson Mike Kart

If you have further questions:

Contact your US Reagent Sales Rep or e-mail: lyoplate@bd.com

Please visit our BD Lyoplate[™] page at: www.bdbiosciences.com/lyoplate

