Z-DEVD-FMK, Caspase-3 Inhibitor

Product Information

Material Number: 550378
Size: 1 mg
Storage Buffer: Lyophilized in dimethyl sulfoxide (DMSO).

Description

Members of the caspase family play key roles in inflammation and mammalian apoptosis. Z-DEVD-FMK is an irreversible and cell permeable inhibitor of caspase-3. The peptide is O-methylated in the P1 position on aspartic acid providing enhanced stability and increased cell permeability. This inhibitor can be used to inhibit caspase-3 activity and to study events downstream of caspase-3 activation. Z-DEVD-FMK has a molecular weight of 668 Daltons.

Preparation and Storage

Avoid multiple freeze-thaws of product.

Store the lyophilized Z-DEVD-FMK inhibitor at -20°C. Reconstitute the Z-DEVD-FMK inhibitor in DMSO before use. The reconstituted Z-DEVD-FMK inhibitor may be stored in small aliquots at -20°C.

Application Notes

Application

Flow cytometry Routinely Tested

Recommended Assay Procedure:

The Z-DEVD-FMK inhibitor is designed to be used in both in vivo and in vitro cell based assays to measure the inhibition of apoptosis. Reconstitute 1.0 mg of Z-DEVD-FMK inhibitor in DMSO. A 10 mM stock solution may be made by dissolving 1.0 mg of Z-DEVD-FMK in 150 µl DMSO. The final concentration of inhibitor may vary between experimental systems and investigators are encouraged to titrate the...
inhibitor for optimal performance. As a precautionary note, do not exceed a final DMSO concentration of 0.2% as higher levels may cause cellular toxicity and mask the effect of the caspase inhibitor.

Suggested Companion Products

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Name</th>
<th>Size</th>
<th>Clone</th>
</tr>
</thead>
<tbody>
<tr>
<td>559763</td>
<td>PE Annexin V Apoptosis Detection Kit I</td>
<td>100 Tests</td>
<td>(none)</td>
</tr>
<tr>
<td>550411</td>
<td>Z-FA-FMK, Negative Control for Caspase Inhibitors</td>
<td>1 mg</td>
<td>(none)</td>
</tr>
</tbody>
</table>

Product Notices
1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.

References