Technical Data Sheet

PBX Calcium Assay Kit (For Probenecid Sensitive Assays)

Product Information

Catalog Number: 640177
Size: Reagents for 100 plates
Components:
- Calcium Indicator, 10 vials, lyophilized
- 10X PBX Signal Enhancer, 100 ml

Description

The BD™ PBX Calcium Assay Kit allows homogeneous measurement of intracellular calcium changes caused by activation of G-protein coupled receptors or calcium channels. The assay involves only one dye addition step and does not require washing, allowing easy implementation in a high-throughput environment. Probenecid, a standard inhibitor of nonspecific anion transport, is not required for dye-loading into CHO, Hela and BD™ ACTOne cell lines with this kit, but can improve retention of the dye in cells.

Storage

Calcium Indicator should be protected from light and stored at -20°C. 10X PBX Signal Enhancer should be stored at room temperature.

Materials not included

<table>
<thead>
<tr>
<th>Material</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% DMSO</td>
<td>Sigma D4540</td>
</tr>
<tr>
<td>10X HBSS buffer</td>
<td>Invitrogen 14065-056</td>
</tr>
<tr>
<td>HEPES Buffer Solution (1M, pH 7.2 to 7.5)</td>
<td>Invitrogen 15630-080</td>
</tr>
<tr>
<td>Water</td>
<td>Sigma 320072</td>
</tr>
<tr>
<td>Probenecid (optional)</td>
<td>Sigma P8761</td>
</tr>
</tbody>
</table>

BD Biosciences

bdbiosciences.com

United States | Canada | Europe | Japan | Asia Pacific | Latin America/Caribbean
877.232.8995 | 888.259.0187 | 32.3.720.550 | 0120.8555.90 | 65.6861.0633 | 55.11.5185.9995

For country-specific contact information, visit bdbiosciences.com/how_to_order/

Conditions: The information disclosed herein is not to be construed as a recommendation to use the above product in violation of any patents. BD Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Purchase does not include or convey any right to re-ad or transfer this product either as a stand-alone product or as a component of another product. Any use of this product other than the permitted use without the express written authorization of Becton Dickinson and Company is strictly prohibited.

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale.
BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2008 BD
CALCIUM ASSAY FLOW CHART

1. Add DMSO to Calcium Indicator
2. Mix Calcium Indicator with 10X Signal Enhancer
3. Dilute in Buffer
4. Add 1X Signal Enhancer
5. Load dye onto cell plate and incubate at 37°C for 1 hour
6. Run calcium flux assay
DATA EXAMPLES

Figure 1. Response of Prostaglandin E Receptor 4 (PTGER4) to Prostaglandin E2 (PGE2). HEK293 cells stably transfected with cyclic nucleotide gated channel and PTGER4 genes (ACT one cell line 80200-219) were plated overnight in 100 μl culture medium on a 96 well Biocoat poly-D lysine coated plate. The next day, the cells were dye-loaded by adding 100 μl 1X Dye-loading solution (BD™ PBX Calcium Assay Kit) and incubating for 1 hour at 37°C. PGE2 was added (50 μl/well) by a FlexStation (Molecular Devices), and the data was recorded simultaneously. A. Kinetic curve of calcium response to different concentrations of PGE2. B. PGE2 dose response curve (n = 4). EC50 = 11.6 pM.

Figure 2. Response of CHO-M1 endogenous P2Y receptor to ATP. CHO-M1 cells were plated overnight in 100 μl culture medium on two 96 well plates. The next day, one plate of cells was dye-loaded with 100 μl/well of 1X Dye-loading solution (BD™ PBX Calcium Assay Kit, half plate with 0.5 mM probenecid and the other half without probenecid), and the other one was loaded with 100 μl/well of Fluo-4 with 2.5 mM probenecid. After 1 hour of incubation at 37°C, cells loaded with Fluo-4 were washed three times with HBSS-Hepes buffer. The same amount of ATP was added to both plates by a FlexStation (Molecular Devices), and the data was recorded simultaneously. EC50 of ATP using BDTM PBX Calcium Assay Kit with 0.5mM probenecid is 223 nM. EC50 of ATP using BDTM PBX Calcium Assay Kit without probenecid is 211 nM. EC50 of ATP using Fluo-4 wash method is 495 nM.
CALCIUM FLUX ASSAY PROTOCOL

Note. Please finish reading the whole protocol before you start the experiment.

CELL PREPARATION
Cell number needs to be optimized for each assay. Optimal assay conditions require a confluent monolayer of cells prior to the assay.

- For adherent cells, plate 50K to 70K cells/well for a 96 well plate and 12K to 20K cells/well for a 384 well plate the day before the experiment. Add 100 μl/well of cell suspension to 96-well plates or 25 μl/well to 384-well plates, allow cells to attach and grow overnight for 16 to 24 hours in cell culture incubators. Prior to dye loading the plate, examine the cells for confluency and overall health.
- For non-adherent cells, dispense 100 μl/well of cells in culture medium to 96-well or 25 μl/well to 384-well poly-D Lysine or other ECM coated plates a couple of hours before the experiment. Allow cells to settle and attach to the bottom of the plates at room temperature. Centrifuge briefly with brake off prior to the experiment.

PREPARATION of 1X DYE-LOADING SOLUTION
1. Remove a vial of Calcium Indicator from -20°C, and allow to sit at room temperature for 5 minutes to warm up. Add 100 μl 100% DMSO, reconstitute the pellet by pipetting up and down several times. Note. To completely solubilize Calcium Indicator, keep the reconstituted Calcium Indicator at room temperature for 10 minutes before the preparation of 1X Dye-loading solution.

2. To prepare 1X PBX Signal Enhancer for 10 plates (100 ml), pipette 78 ml of water, 10 ml of 10X HBSS buffer, 2 ml of 1M HEPES (pH 7.4) and 10 ml of 10X PBX Signal Enhancer to a bottle, mix well.

Note. Probenecid is not essential for dye-loading, although it improves retention of the dye in cells. For cells that require probenecid for loading (e.g. CHO), prepare fresh probenecid stock in 1N NaOH and then dilute the stock in 1X PBX Signal Enhancer to a concentration of 1 mM to 5 mM. Other balanced salt buffers could be used to dilute 10X PBX Signal Enhancer to achieve the optimal conditions for assays where HBSS is not optimal.

3. To prepare 1X Dye-loading Solution for 10 cell plates, pipette 100 μl of PBX Calcium Indicator to 100 ml of 1X PBX Signal Enhancer, mix by inverting the bottle several times. Note. If users need less than 10 plates of material for the experiment, the 1x Dye-loading Solution could be stored at -20°C for 2-3 week without compromise on performance. If users prefer to store the material for longer period of time, we recommend storing Calcium Indicator and PBX Signal Enhancer separately. Aliquot the unused reconstituted Calcium Indicator to several eppendorf tubes, seal tightly and store at -20°C protected from light. The reconstituted Calcium Indicator is stable for at least one month if the tube is sealed tightly. For best result, place the tubes in a zip lock plastic bag with desiccant and avoid repetitive freeze-thaw cycles. 1X PBX Signal Enhancer without probenecid could be stored at room temperature.

DYE LOADING
1. Remove cell plates from incubator and add an equal volume of 1 X Dye-loading Solution to each well (e.g. 100 μl to 100 μl culture medium/well for 96-well plates, or 25 μl to 25 μl culture medium/well for 384-well plates). Note. The components of the kit have no interference with serum or phenol red. However, for some assays that require a serum free environment, culture medium that contains serum should be removed prior to dye loading and replaced with an equal volume of 0.5X Dye-loading Solution.

The 1x dye-loading solution is stable for 8 to 12 hours at room temperature and 2-3 weeks at -20C.

2. Incubate cell plates with dye for 1 hour in cell culture incubator. Note. If the calcium flux assay is going to be performed at room temperature, place the cell plates at room temperature for at least 20 minutes to cool down before placing the plates on readers. If the calcium flux assay requires 37°C, perform the assay immediately after dye-loading.

CALCIUM FLUX ASSAY
Place the cell plates on a FLIPR, FlexStation or FDSS, and perform calcium flux assay as described in instrumentation manuals.

For assays performed on a FLIPR, use the following wavelength parameters:
Excitation: 485 nm
Emission: 525 nm
AutoCutoff: on (515 nm)

For assays performed on a FLIPR and an FDSS, use the standard filters for calcium assays.

Note. Dispense speed and height for compound additions need to be optimized for each assay. In general, a dispense speed higher than the settings for other calcium flux assays is recommended.

BD Biosciences

bdbiosciences.com

United States Canada Europe Japan Asia Pacific Latin America/Caribbean
877.232.8995 888.259.0187 32.51.720.550 0120.8555.90 65.6861.0633 55.11.5185.9995

For country-specific contact information, visit bdbiosciences.com/how_to_order/

Conditions: The information disclosed herein is not to be construed as a recommendation to use the above product in violation of any patents. BD Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Purchase does not include or carry any right to reend or transfer this product either as a stand-alone product or as a component of another product. Any use of this product other than the permitted use without the express written authorization of Becton Dickinson and Company is strictly prohibited.

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale.

BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2008 BD

940177
1/10/09

Page 4 of 5
TROUBLESHOOTING GUIDE

1. Low baseline fluorescent signal
 • Inspect the cell density and morphology under a microscope. Low cell density or unhealthy cells could result in low baseline signal.
 • Check the storage of Calcium Indicator. Calcium Indicator needs to be stored in a tightly sealed tube frozen with desiccant. Once it is reconstituted, repetitive freeze thaw cycles should be avoided.
 • Make sure that Calcium Indicator is mixed well with 1X PBX Signal Enhancer before dye loading.

2. Response to agonist lower than expected
 • Check the overall health of cells.
 • Cell density is too high or too low. Cell number titration may be necessary.

3. Well-to-well variations after agonist addition.
 • Optimize the dispense height and speed for ligand additions to ensure instant mixing.
 • Cells should be evenly distributed among wells. Before plating, microscopically examine the culture to be sure that they have been broken up into single cells. Clumpy cells respond with greater variability.
 • Check liquid handling system for accuracy of dispense.

4. Response from cells after buffer addition.
 • Unhealthy cells could respond to buffer addition. Make sure cells are not over confluent or unhealthy before plating.
 • Cells are disturbed by high compound addition speed. Set the pipetting speed and height properly to avoid stimulating the cells by physical forces during compound addition.

5. Response from cells after the addition of buffer containing only DMSO
 • If the calcium flux experiment is conducted at room temperature, allow the cell plates to equilibrate at room temperature for a longer period of time (ie. one hour) after dye-loading at 37 degree.
 • Allow cells to adapt to a DMSO environment prior to drug addition by adding DMSO in Dye-loading Solution (slightly less than final concentration of DMSO after drug addition).

Limited Label License

Certain components of this product are provided under an agreement between Molecular Probes, Inc. and Becton Dickinson and Company, and the manufacture, use, sale or import of this product may be subject to one or more of U.S. Patents Nos. 4,795,712; 6,162,931; 6,229,055, and corresponding foreign equivalents, owned by Molecular Probes, Inc. (a wholly owned subsidiary of Invitrogen Corporation). The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product for research use only by the buyer, where such research does not involve testing, analysis or screening services for any third party in return for compensation on a per test basis (except as provided below upon payment of an additional fee). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data to third parties, except for contract research services as provided below upon payment of an additional fee; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. Buyer may use the product or its components to provide contract research services to third parties, only upon payment of an annual fee to Becton Dickinson and Company. For information on purchasing a license for these contract research services, contact Becton Dickinson and Company at Business Development, 10975 Torreyana Road, San Diego, CA 92121-1106, USA, Tel: (858) 812-8800. Fax: (858) 812-8995. For information on purchasing a license to this product for purposes other than research, contact Molecular Probes, Inc., Business Development, 29851 Willow Creek Road, Eugene, OR 97402, USA, Tel: (541) 465-8300. Fax: (541) 335-0504. This product has been sold to the buyer with the understanding that it will be used solely for research and will not be analyzed or reverse-engineered. If you do not agree to this term, return the unopened product.