Strategies for In Vitro Metabolic Stability Testing

Christopher Patten, PhD

BD Biosciences

December 2, 2009
Presentation Overview

• Overview of in vitro metabolic stability testing
• In vitro model systems and assay conditions
• In vitro / in vivo Extrapolations (predicting in vivo clearance)
The Ideal Drug
ADME/Drug Development View

• Administration is oral and the drug is easily absorbed
 – Good permeability and aqueous solubility (class I compounds)

• Metabolically stable (but not too stable)
 – Swallow the pill once a day

• Predictable Metabolism
 – Linear drug metabolism kinetics

• Balanced Clearance
 – Renal or biliary secretion of parent drug
 – Metabolism to limited number of inactive products
 – Metabolism by several P450s (>2)
 – Metabolism should not depend on Polymorphic P450s

• Not an Inhibitor or Inducer of ADME Enzymes
 – P450, UGT, and MDR1 (P-gp)

• Small First-Pass Effect (liver or gut)
• Wide Therapeutic Index
Advantages of Enhancing Metabolic Stability

- Increase bioavailability and half-life; less frequent dosing
 - Improved patient compliance
- Better congruence between dose and plasma concentration
 - Reduce need for therapeutic monitoring (expensive)
- Reduction in turnover rates from different pre-clinical species
 - May improve extrapolations from animal data to humans
- Lower patient to patient variability in drug levels
 - Patient variability largely due to differences in drug metabolism capacity
- Reduce the number and significance of active metabolites
 - Reduces the need for further studies of metabolites in animals and humans

Timing of Metabolic Stability Testing

• Early Discovery
 – HTS screens for loss of parent
 – Determine in vitro T1/2
 – Rank order compounds, SAR studies
 – Generally test in liver microsomes from rat and human (pools)

• Development
 – Determine C_{int} with full Kinetics (V_{max} and K_m)
 – Use scaling factors and liver flow models to predict in vivo hepatic clearance
Species Differences

- Variations in primary sequence of CYP between species can result in differences in substrate specificity/activity
- Levels of CYP isoforms may differ between species
- Interspecies differences in enzyme inhibition
- Cannot make cross-species predictions regarding metabolic stability
Sites of Drug Metabolism

• Primary Site of Metabolism is Liver
 – Extra-Hepatic metabolism can be important
 • “Portals of entry” tissues often have significant drug metabolism capability
 • GI (small intestine) is major site of metabolism next to liver
 • Other sites include: lung, skin, nasal mucosa, kidney

• First Pass Effect
 – Drug absorbed in small intestine and transported to liver via portal vein
 – Extensive metabolism in liver and/or intestine
 – Limited systemic availability
Bioavailability for Oral Medication (F)
Metabolism/Biotransformation is divided into two groups

- **Phase 1**: Addition or unmasking of functional, polar moiety
 - Oxidation (P450 or FMO)
 - Hydrolysis (Esterases)
 - Most typical is Hydroxyl group created or exposed (de-alkylations)

- **Phase 2**: Conjugation with small, endogenous substance, often takes advantage of functional group added in Phase I
 - UGT is most important Phase 2 enzyme (conjugates with GA)

- **End Result (Phase 1 + 2)**: Increase polarity and aqueous solubility of drug which facilitates elimination from the body
Phase I and Phase II Drug Metabolism Enzymes in ER and Cytosol

Location of Metabolic Enzymes

Location of UGTs causes “Latency”. Need to add detergent or alamethicin.
Phase I and Phase II Metabolism

- Can be active or inactive at target site
- Toxic
- Mutagen or Carcinogen

Drug → Metabolite → Sulfate Conjugate

- Expose functional group that can be conjugate
- Small increase in hydrophilicity

- Large increase in hydrophilicity
- Conjugates are generally inactive
Human Phase I Enzymes of Drug Metabolism

CYP: cytochrome P450, NQ01: NADPH:quinone oxidoreductase (DT diaphorase); DPD: dihydropyrimidine dehydrogenase; ADH: alcohol dehydrogenase; ALDH: aldehyde dehydrogenase

Evans and Relling, Science (1999)
Human Phase II Enzymes of Drug Metabolism

HMT: histamine methyltransferase; TPMT: thiopurine methyltransferase; COMT: catechol O-methyltransferase; UGT: Uridine Glucuronosyl-S-Transferases; ST: Sulfotransferase; GST: Glutathione-S-Transferases

Evans and Relling, Science (1999)
Model Systems for Predicting Drug Clearance In Vivo

Whole Animal
Whole Organ (liver)
Organ Slices
Cell lines (HepaRG) Hepatocytes
Microsomes/S9
Expressed Enzymes
Purified Enzymes

Used for Metabolic Stability Testing
In Vitro Systems

I. Hepatocytes: Prepared from fresh human livers (organ donors)
 • Gold-Standard for DM Studies
 – Contain all the enzymes/transporters and co-factors for drug metabolism
 – Metabolic stability (Screening for long half-life drugs)
 – Metabolite profiling (structures of metabolites)
 – Liver toxicity studies
 – Enzyme induction studies (P450 induction)
 – In vitro / In vivo scaling

 Not used for:
 – Enzyme Mapping/Reaction Phenotyping
 – DDI

II. Liver Slices
 • Similar to hepatocytes in that they contain the full complement of hepatic DMEs
 – Harder to prepare than other systems
 – Seldom used for ADME studies
III. Liver Microsomes
- Contain all P450s, FMOs, and UGTs
- Easy to prepare and can be stored for long periods (-80ºC)
- Withstand several Freeze/Thaw cycles
- Can make Donor Pool; 20 to 150 donors (average patient in population)
- Uses: Drug half-life (in vitro scaling), DDI, metabolite profiles, enzyme mapping, mechanistic studies

IV. Liver S9
- Same as microsomes, but contains cytosolic enzymes (SULT, GST, XO, ADHs, NATs)
- Same advantages and uses as HLM
- P450 activity ~five-fold lower vs HLM
17

Liver tissue

1) Homogenize
2) Low speed centrifugation
3) High speed centrifugation

Supernatant - **Cytosol**

Pellet -- **Microsomes**

Supernatant - **S9**

Pellet -- waste

S9 = Both cytosol and microsomes = Phase I & II enzymes

Cytosol = Soluble proteins (phase II enzymes) = NAT, GST, SULT

Microsomes = membrane proteins (phase I enzymes) = P450, UGT, FMO
In Vitro Systems

V. Recombinant Enzymes (e.g. BD Supersomes™ Enzymes)

- Single DME expressed in a cell line
 - Baculovirus-insect cells
 - Yeast
 - E. coli
 - Mammalian cells
- Co-expressed with P450 OR and in some cases with b5
- Reaction phenotyping (EM), DDI, mechanistic studies
- Can be useful for studying highly stable compounds (more active than HLM)
- Requires RAF or ISEF for comparing to HLM activity
Activity Comparison (per mg protein)
BD Supersomes Enzymes versus HLM

- CYP1A1-Phenacetin
- CYP1A2-Phenacetin
- CYP2A6-Coumarin
- CYP2B6-7EFC
- CYP2C8-Paclitaxel
- CYP2C9-Diclofenac
- CYP2C19-Mephenytoin
- CYP2D6-Bufuralol
- CYP2E1-p-Nitrophenol
- CYP3A4-Testosterone
- CYP4A11-Lauric Acid
- FMO-3-MTS
Assay Incubation Conditions

• **Assay buffer**
 - Phosphate or Tris buffers
 - 100 mM KPO₄ (pH 7.4) with MgCl₂ (~3 mM) is most common

• **Co-factors**
 - NADPH or NADPH generating system: can use either, no significant difference (GS contains MgCl₂)
 - Phase 2 co-factors: UDPGA (10 mM), PAPS (1 mM) are saturating

• **BSA or HSA (2%)** (Miners, et al., DMD, 2008)
 - Sequesters unsaturated long chain FFA released from microsomal membranes during the course of an incubation
 - Shown to decrease K_m for UGT2B7, UGT1A9, and CYP2C9 (increase Cl_{in}), and improve IV-IVE predictions (FFA act as competitive inhibitors)
 - Other CYPs and UGTs may be effected
 - HAS need to be higher grade: HAS-FAF grade
 - Albumin binds drugs: need to measure fu of drug in incubation

• **UGT Reactions**
 - Alamethicin (25 ug/mL) to reduce latency (Alamethicin forms pores in microsomal membrane)
 - Saccharic acid 1,4-lactone (5 mM) to inhibit endogenous glucuronidase activity

• **Organic Solvents for Dissolving Test Compounds** (Busby, et al., DMD, 1999)
 - Organic solvents can inhibit P450s
 - Acetonitrile: up to 2%
 - Methanol: up to 1% (caution: MeOH can cause formaldehyde adducts and artifactual loss – Yin, et al, 2001)
 - DMSO: up to 0.2%
 - UGTs can also be inhibited by organic solvents

• **Non-Specific Binding to Microsomal Membranes**
 - Test compounds can bind non-specifically to matrix (microsomes)
 - Extent of binding is compound specific
 - At low protein concentrations (<0.1 mg/ml) binding may be negligible
 - Binding between HLM and rCYP are often considered the same (Stinger, et al., DMD, 2009)

• **Protein/Cell Concentrations**
 - Hepatocytes: 0.25 X 10⁶ cells/0.25 mL (24-well plate)
 - Liver microsomes: 0.5 mg/mL
 - Liver S9: 2.0 mg/mL
 - cDNA-expressed enzymes: P450 activity needs to be scaled to HLM activity (RAF, ISEF), 100 pmol/ml is common
Drug Discovery
HTS Metabolic Stability Assays

- Fully automated HTS Metabolic Stability assays
 - 384-well plate based assays (>1000 compounds/week)
 - Reduction in assay incubation volumes: as low as 15 µl (~10 µg HLM per well)
 - Loss of parent method
 - Typically screen with rat and human liver microsomes
 - Decrease the number of samples using sample pooling methods (e.g. cassette analysis, Halladay, et al. DM Letters, 2007)

- Combine with LC/MS for analysis
 - Fast, sensitivity and selective
 - High solvent flow rates, short columns, and column switching minimize LC run times
Predicting Drug Clearance
In Vivo from In Vitro Data
Drug Clearance

• Clearance (CL) is a measure of elimination of a drug from the body
• Text book definition: volume of blood cleared of drug per unit time
 – Drug Half Life = 0.693 x (Volume Distribution / CL)
• Determines how often you need to take a drug to achieve the desired (therapeutic) effect
• Clearance Mechanisms
 – CL-met vs. CL-renal vs. CL-biliary vs. CL-other
 – CL is additive:
 \[CL \text{ (Systemic)} = CL_{\text{Hepatic}} + CL_{\text{Renal}} + CL_{\text{Biliary}} + CL_{\text{Other}} \]
Assumptions Required for Predictive Value of Microsomes

- Metabolism is a major mechanism of clearance
 - $\text{CL-met} >> \text{CL-renal} + \text{CL-biliary} + \text{CL-other}$
- Liver metabolic rate $>>$ all other tissues
- Oxidative metabolism predominates
 - $\text{P450} + \text{FMO (UGT)} >>$ all other metabolic reactions
- In vitro enzyme specific activity \sim in vivo enzyme specific activity
Intrinsic Drug Clearance

- **CL_{int}**: enzyme-mediated clearance that would occur without physiological limitations (e.g. protein binding, hepatic blood flow)
 - Assumes unbound (free) drug concentrations
 - \(\text{CL}_{\text{int}} = \frac{V_{\text{max}}}{K_m} \) or \(0.693/t_{1/2} \) (half-life)
 - \(V_{\text{max}} = \text{pmol product/min} \times \text{mg protein} \)
 - \(K_m \) (Michaelis-Menten Constant) = \(\mu \text{M} \)
 - \(\text{CL}_{\text{int}} \) units = \(\mu \text{L/min} \times \text{mg microsomal protein} \) (or # hepatocytes)
Hepatic Scaling Factors for Whole Liver Intrinsic Clearance

- Microsmal SF (MSF)
 - 40 mg microsomal protein/gram liver (Hakooz, 2006)
- Hepatocellularity SF
 - 99 million cells/gram liver (Barter, 2007)

Liver Weight (LW): 1400 grams
Body Weight (BW): 70 kg

\[\text{CL}_u\text{H,int} = (\text{CL}_{\text{int}} \times \text{MSF} \times \text{LW}) / \text{BW} \]
Units = μL/min*kg BW (or mL/min*kg BW)
Whole liver CL: \text{CL}_u\text{H,int} and \text{CL}_{\text{int}}......both forms are used

\[\text{CL}_u\text{H,int} = \text{CL}_{\text{int}} \left(\frac{V_{\text{max}}}{K_m} \right) \times 40 \text{mg microsome/gram liver} \times 1400 \text{ gram liver/kg BW} \]
Liver Models to Determine In Vivo Metabolic Clearance

- Relate drug delivery (controlled by blood flow and drug binding in blood) to the metabolic reaction
- Allow for concentration differences across the liver

Common Assumptions of Liver Models

- Distribution into liver is perfusion rate limited and no diffusional barriers exist
- Only unbound drug crosses the cell membrane and occupies the enzyme site
- A homogenous distribution of hepatic enzymes
Liver Models cont.

Well-Stirred Model
(drug-in = drug-out)

Parallel-Tube Model
(gradient across liver)

Dispersion Model
(represents the two extremes; D_N)
Hepatic Clearance (CL_H)
(total body CL = CL_{Heptic} + CL_{Renal})

- Organ Clearance (steady state) = \(Q*(C_{in} - C_{out})/ C_{in} \)
 - \(Q = \) Blood Flow
 - \(C = \) Drug concentration
- Extraction Ratio (ER) = \((C_{in} - C_{out})/ C_{in} \)
- CL = \(Q * ER \)

\[CL_H = Q_H * (fu*CLu_{H,int})/(Q_H + fu*CLu_{H,int}), \]
with \[ER_H = (fu*CLu_{H,int})/(Q_H + fu*CLu_{H,int}), \]
and \[CL_H = Q_H * ER_H \]
- \(fu = \) Unbound fraction of drug (not bound to protein)
- Hepatic Blood Flow = 20.7 ml/min*kg BW (or ~90 L/hour)

Well-stirred model: assumes homogeneous distribution of drug in liver (mixed well throughout liver). Drug concentration coming out of liver equals the intra-cellular drug concentration.

Correcting for non-specific binding to Matrix can improve predictions (Riley et al. DMD, 2005)
- Measure non-specific binding directly (equilibrium dialysis – e.g.RED devise)
- Estimate from octanol:water partition coefficient (Stringer et al, DMD, 2009)
- \[CL_H = Q_H * (fu*(CLu_{H,int}/fu_{inc})) / (Q_H + fu*(CLu_{H,int}/fu_{inc})) \]
Hepatic Extraction Ratio

Fraction Escaping Metabolism (Bioavailability (F) = 1 - E_H)

Fraction Metabolized (E_H)

$CL_H = QH \times E_H = 90 \text{ L/hour} \times 0.9 = 81 \text{ L/hour}$
Flow Limited and Capacity Limited CL_H

- **Flow Limited** (*high CL drugs*)
 - $fu \times CL_{uH, int} \gg Q_H$
 - $CL_H = Q_H \times (fu \times CL_{uH, int}) / (fu \times CL_{uH, int}) = Q_H$
 - E.g. propranolol, lidocaine, morphine

- **Capacity Limited** (*low CL drugs*)
 - $fu \times CL_{uH, int} \ll Q_H$
 - $CL_H = Q_H \times (fu \times CL_{uH, int}) / Q_H = fu \times CL_{uH, int}$
 - E.g. warfarin, phenytoin, quinidine, tolbutamide
 - Tolbutamide CL increases in hepatitis patients
 - Due to increase in fu (no change in CL_{int})
Drug Half-Life Determination

<table>
<thead>
<tr>
<th>Time (X)</th>
<th>Percent (Y)</th>
<th>LN%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>4.61</td>
</tr>
<tr>
<td>5</td>
<td>94</td>
<td>4.54</td>
</tr>
<tr>
<td>20</td>
<td>78</td>
<td>4.36</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
<td>3.91</td>
</tr>
<tr>
<td>180</td>
<td>15</td>
<td>2.71</td>
</tr>
<tr>
<td>300</td>
<td>6</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Slope = -k = -0.0115

\(t(1/2) = 0.693/-k = 60.2 \text{ min} \)

- Loss of parent method used most frequently in Discovery Stage (HTS assays)
- Measure disappearance of low concentration of drug (<5 or 10 µM)
- When \(S << K_m \)…\(T1/2 = \ln2/-k \) (or 0.693/-k)
- Terminal elimination rate constant (-k): slope of linear regression from natural log percentage substrate remaining versus incubation time
- Intrinsic clearance (CL\(_{int}\)) in units of mL/min/kg
- \(T1/2 \) units = min - need to include ml/mg into CL\(_{int}\) calculation to convert to mL/min*mg

\[\text{CLuH\(_{int}\)} = \frac{0.693}{\text{in vitro } T1/2} \times \text{mL incubation/mg protein} \times 40 \text{mg microsome/gram liver} \times 1400 \text{ gram liver/kg BW} \]
Substrate Concentration Plots

Michaelis-Menten Kinetics

\[v = \frac{V_{\text{max}} \cdot S}{K_m + S} \]

Rectangular Hyperbola

Direct Plot: \(V \) vs \([S]\) \(V = V_{\text{max}} \)

Eadie-Hofstee Plot: \(v = V_{\text{max}} - K_m \left(\frac{v}{[S]}\right) \)
Exaggerates deviations from the Michaelis-Menten kinetics

\(K_m \) (substrate concentration that gives \(\frac{1}{2} V_{\text{max}} \))

Linear Transformation

\[\text{Slope of line} = \frac{V}{K_m} \]

\([S] = 10K_m\), then \(v = 90\% \) of \(V_{\text{max}} \)
Kinetic Parameter Determinations

- Michaelis-Menten Kinetics (Simple form)
- Rate of Metabolism, \(v = \frac{V_{\text{max}} \cdot S}{K_m + S} \)
- \(CL_{\text{int}} = \frac{V_{\text{max}}}{K_m} \) (mL/min*mg) for simple Michaelis-Menten Kinetics
- 10 substrate concentrations (cover above and below \(K_m \))
- Determine metabolite formation under linear conditions for time and protein
 - < 20% substrate utilization
Examples of Common Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>CL [mL min(^{-1}) kg(^{-1})]</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazepam</td>
<td>0.38</td>
<td>Low</td>
</tr>
<tr>
<td>Theophylline</td>
<td>0.65</td>
<td>Low</td>
</tr>
<tr>
<td>Caffeine</td>
<td>1.4</td>
<td>Low</td>
</tr>
<tr>
<td>Midazolam</td>
<td>6.6</td>
<td>Medium</td>
</tr>
<tr>
<td>Felodipine</td>
<td>12</td>
<td>Medium</td>
</tr>
<tr>
<td>Propranolol</td>
<td>16</td>
<td>High</td>
</tr>
<tr>
<td>Nitredepine</td>
<td>21</td>
<td>High</td>
</tr>
</tbody>
</table>
Relative Activity Factor and ISEF for Predictions with rCYPs

- Recombinant CYP activity cannot be compared to HLM activity directly...need a conversion factor
- RAF (relative activity factor) and ISEF (inter system extrapolation factor) convert rCYP activity to activity in HLM
 - \(\text{CL}_{\text{rCYP,int}} \) to \(\text{CL}_{\text{H,int}} \)
- RAF
 - HLM probe/rCYP probe
 - Specific activity / Turnover Number
 - RAF units are pmol/mg
- ISEF
 - Takes into account CYP abundance in reference HLM pool (e.g. BD Ultrapool™ HLM 150 donor pool)
 - \(\frac{\text{HLM}_{\text{probe}}}{(\text{rCYP}_{\text{probe}} \times \text{CYP abundance})} \)
 - ISEF have no units
 - Use \(\text{Cl}_{\text{int}} \) for HLM and rCYP (\(V_{\text{max}}/K_m \)) vs \(V_{\text{max}} \) activity
 - Drug XYZ \(\text{CL}_{\text{H,int}} = \text{ISEF} \times \frac{V_{\text{max}}}{K_m} \times \text{CYP abundance} \times \text{Liver Scaling Factors} \)
- ISEF allow population variability to be accessed
Data from Stringer, et al. DMD, 2009

rCYP vs HLM and Hepatocytes for Predicting In Vivo CL

<table>
<thead>
<tr>
<th></th>
<th>rCYP</th>
<th>HLM</th>
<th>Hepatocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>72</td>
<td>41</td>
<td>57</td>
</tr>
<tr>
<td>% Inside 2-fold error</td>
<td>32</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>% Inside 5-fold error</td>
<td>73</td>
<td>66</td>
<td>46</td>
</tr>
</tbody>
</table>
Scaling Intrinsic Clearance to In Vivo Hepatic Clearance

\[
\text{CLu-int}_{\text{in vitro}} \downarrow \quad \text{Scaling factors} \quad \downarrow \quad \text{CLu-int}_{\text{whole liver}} \quad \downarrow \quad \text{Models of hepatic clearance} \quad \downarrow \quad \text{CL-hep}
\]

\text{In Vivo Clearance}

Well-Stirred Model:
\[
\text{CLh} = \frac{\text{fub} \times \text{CLu-int}_{\text{in vivo}} \times QH}{\text{fub} \times \text{CLu-int}_{\text{in vivo}} + QH}
\]

Parallel Tube Model:
\[
\text{CLh} = QH - QH \times \exp(-\text{fub} \times \text{CLu-int}_{\text{in vivo}}/QH)
\]

Dispersion Model:
\[
\text{CLh} = QH \times \frac{1-4a}{(1+a)^2 \exp[(a-1)/2Dn] - (1-a)^2 \exp[-(a-1)/2Dn]}
\]

\[
a = (1 + 4Rn \times Dn)^{1/2} \quad ; \quad Dn = 0.17 \quad \text{(dispersion no.)} ; \quad Rn = \text{fub} \times \text{CLu-int}_{\text{in vivo}}/QH \quad \text{(efficiency no.)}
\]

\(\text{fub} = \text{fraction unbound} ; \quad QH = \text{hepatic blood-flow}\)
Clearance predictions in freshly isolated rat hepatocytes and human cryopreserved hepatocytes

Rat hepatocytes
- High in vitro – in vivo correlation (fresh)
- Decreased correlation with frozen cells

Human cryopreserved hepatocytes
- ~4.2 fold under prediction (Brown et al., 2006)

- 52 drugs from 5 studies
- Loss of parent and metabolite formation

Systemic Under Prediction
Summary of Prediction Reliability

- Models tend to under predict for human Clearance (Chiba, et al. 2009)
 - Microsomes: ~9-fold under prediction
 - Hepatocytes: ~3 to 6-fold under prediction
- Fresh prepared rat hepatocytes gives most reliable predictions (good correlation between in vitro and in vivo CL)
- Human hepatocytes give more reliable predictions vs HLM
- Predictions most unreliable for stable, low CL drugs—low CL in vitro, but high CL in vivo (model systems works best for high CL drugs)
- Possible explanations for discrepancy
 - Damage to metabolic enzymes during tissue handling
 - Extra hepatic metabolism (gut CYP3A4)
 - Non-specific binding to microsomal lipids and cellular components in the incubation
 - Hepatic drug uptake transporters (concentration in liver > plasma concentration). Measured in hepatocytes by “media loss” assay Oil Centrifugation method.
 - Fatty acid or other inhibitors in media (CYP2C9, UGT2B7)
 - Latency issue for UGTs
 - Incubation of human cryo hepatocytes in 100% serum improved predictions (Blanchard et al., JPP, 2006)
 - CL with serum predicted 85% of compounds within 2-fold (vs 77% without)
 - rCYP will have same under predicting issues if activity related to HLM
Conclusion

• In vitro metabolic stability is important early ADME test for predicting in vivo CL

• Amenable to high throughput screening and automation

• Models for predicting in vivo CL are improving, but still tend to under predict

• General trend is that compounds are becoming more stable and involve more non-CYP pathways for metabolism
Questions?

Contact Information:
Christopher Patten, PhD
e-mail: chris_patten@bd.com

Technical Support:
In the U.S.
tel: 877.232.8995 or 978-901-7491
e-mail: labware@bd.com
Outside the U.S.
Contact your local distributor or visit bdbiosciences.com/offices to locate your nearest BD Biosciences office.

For research use only. Not intended for use in diagnostic or therapeutic procedures. BD, BD Logo, and all other trademarks are the property of Becton, Dickinson and Company. ©2009 BD