Driving Cellular Communication – Effects of Culture Environments on Cell Growth and Differentiation

Amy Laws, Ph.D.
BD Biosciences – Discovery Labware
Outline

• **Culture surfaces**
 – Synthetic
 – Biological – extracellular matrix (ECM)

• **Introduction to 2D vs 3D culture**

• **Cell type-specific examples**
 – Epithelial cells
 – Endothelial cells
 – Neurons
 – Human embryonic stem cells
How Surfaces Affect Cell Culture

• **Surface properties**
 – Surface charge, protein motifs
 • A misconception: more hydrophilic the better (Poly-lysine coated surface is more hydrophobic than Tissue Culture (TC)-treated surface)
 – 2D vs 3D structure

• **Effect of surface is dependent on the culture environment**
 – Cell type
 – Media composition
 – Incubation time, etc.
Culture Surfaces

- **Vertebrate cells have negative surface charge**
 - Cells spread using the ECM they lay down as well as serum or media derived attachment factors

- **Synthetic surfaces**
 - Negative: glass, TC-treated polystyrene
 - Positive and negative: BD Primaria™ Cultureware
 - Positive: poly-lysine

- **ECM components (2D or 3D)**
 - Fibronectin is a key attachment factor derived from serum
 - BD BioCoat™ Cultureware (ex., Collagen I, Collagen IV or Fibronectin)
 - Reconstituted basement membrane (ex., BD Matrigel™ Matrix)

- **Microporous membranes (cell culture inserts)**
Synthetic Surfaces: Surface Chemistry

• Non-treated polystyrene
 – Ex. BD Falcon Non-treated Surface
Synthetic Surfaces: Surface Chemistry

• **TC-treatment**
 – Rendered hydrophilic by a process that adds a variety of negatively charged functional groups to the surface
 – Ex. BD Falcon™ TC-treated Surface
 • Vacuum-gas plasma treatment – oxygen
 • Specific conditions of pressure and temperature

![Chemical structure](image)
Synthetic Surfaces: Surface Chemistry

• **BD Primaria™ Surface**
 – Vacuum-gas plasma treatment – oxygen + ammonia
 – Integrates **amine and amide functional groups** with the traditional hydroxyl/carboxyl TC-surface chemistry
Synthetic Surfaces: Cell Growth on Polystyrene Substrates

Chinese hamster ovary (CHO) cells, 72 hours after seeding, 10% serum
Synthetic Surfaces: Cell Growth on Polystyrene Substrates

LNCaP (human carcinoma) cell, 24 hours after seeding, 10% serum

Non-treated Polystyrene

BD Falcon™ TC

BD Primaria

MTS assay

OD\textsubscript{490}

Non-treated Polystyrene

BD Falcon TC

BD Primaria
Synthetic Surfaces: Cell Growth on Polystyrene Substrates

3T3 (mouse fibroblast) cells, 24 hours after seeding, serum-free media

Non-treated Polystyrene

BD Falcon™ TC

BD Primaria

MTS assay

OD$_{490}$

Non-treated Polystyrene BD Falcon TC BD Primaria
Synthetic vs. Biological Surfaces

- **Synthetic**
 - Covalent modification of polystyrene
 - TC-treated
 - BD Primaria™ Cultureware
 - Coated polystyrene surface
 - Poly-lysine

- **Biological**
 - Coated polystyrene surface
 - ECM protein(s)
 - Thin layer (2D)
 - Gel (3D)
Biological Surfaces: ECM Proteins

- ECM molecules interact with cell surface receptors (e.g., regulation of integrin signaling by fibronectin:integrin interactions)
- ECM appears to function in the storage and presentation of growth factors
- ECM components
 - ex., Fibronectin, Laminin, Collagen
Biological Surfaces: ECM Proteins

• **Fibronectin (FN)**
 – Large dimeric protein *(multiple isoforms)*
 – Contributes to matrix organization
 – Promotes cell adhesion via interaction between FN ‘**RGD motif**’ and integrin receptors
 – Promotes cell differentiation and functionality (e.g., cell migration, integrin signaling, gene expression)
• **Laminin (LM)**
 – Large heterotrimeric proteins
 – Primarily found in basal lamina
 – Major structural component of basal lamina
 – Promotes cell adhesion via integrin and non-integrin receptors
 – Promotes cell differentiation and functionality (e.g., neurite outgrowth, receptor signaling, gene expression)
Biological Surfaces: ECM Proteins

- **Collagen**
 - Most ubiquitous ECM molecules
 - Fibrous proteins that provide structure and resiliency to tissues
 - Major component of skin
Biological Surfaces: Reconstituted Basement Membrane

• **BD Matrigel™ Matrix**
 - Purified preparation from EHS mouse tumors
 - Composition
 • Laminin ~60%
 • Collagen IV ~30%
 • Entactin ~8%
 • Heparan sulfate proteoglycan (perlecan)
 • Growth factors (e.g., PDGF, EGF, TGF-β)
 • Matrix metalloproteinases
2D vs. 3D Cell Culture: Cell Differentiation and Function

- Biological composition of the culture environment
 - Cell type(s)
 - ECMs
 - Growth factors
- Molecular interactions and cell adhesion
 - Cell:cell, cell:ECM, cell:growth factor
 - ECM:ECM, ECM:growth factor
- Mechanical strength and structural properties
 - Degree of rigidity
 - 3D architecture
- Size scale
 - Pore or fiber size relative to cell size (microfibers vs. nanofibers)
2D vs. 3D Cell Culture

<table>
<thead>
<tr>
<th></th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth Substrate</td>
<td>Rigid; inert</td>
<td>Mimics natural tissue environment</td>
</tr>
<tr>
<td>Architecture</td>
<td>Not physiological; cells partially interact</td>
<td>‘Physiological’; promotes close interactions between cells, ECMs, growth factors</td>
</tr>
<tr>
<td>Cell Encapsulation</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Growth Factor Diffusion</td>
<td>Rapid</td>
<td>Slow; chemical and biological gradients regulate signaling, cell-cell communication</td>
</tr>
</tbody>
</table>
2D vs. 3D Cell Culture: Surfaces

- **2D culture surfaces**
 - Synthetic
 - Ex. TC, BD Primaria™, Poly-lysine
 - Biological
 - Ex. Fibronectin, Collagen, Laminin

- **3D culture surfaces**
 - Synthetic
 - Ex. BD™ PuraMatrix™ Hydrogel
 - Biological
 - Ex. BD Matrigel™ Matrix, Collagen, Laminin/Entactin
Factors in Surface Selection

- Assay
 - Undifferentiated cells
 - Differentiation
- Media
- Fast attachment
- Strong attachment
- Cell type

MCF-7 (breast cancer cell line) labeled with Hoechst (blue), Mitotracker green (green) and wheat germ agglutinin (red). BD Pathway™ 855 High-Content Bioimager.
Factors in Surface Choice: Media

- **Serum containing media**
 - Culture surface may be coated with serum proteins – partially or entirely screen out underlying surface properties
 - Surface properties may affect cell attachment through the selective binding of proteins

- **Reduced serum or serum-free media**
 - Underlying surface properties may become more important
Factors in Surface Choice: Media

MRC5 (human fibroblast) cells

Non-treated Polystyrene

5% serum

1% serum

BD Falcon™ TC-treated
Factors in Surface Choice: Rapid Attachment

BHK21 (hamster fibroblast) cells, 1 hour after seeding
Factors in Surface Selection: Strength of Attachment

Transfected HEK-293 (human kidney epithelial) cells, 24 hours in serum-free media

Samples were washed using a Skatron Washer (Molecular Devices)
Factors in Surface Selection: Cell Type

- Epithelial cells
- Endothelial cells
- Neurons
- Human embryonic stem cells
Epithelial Cells

- Line all cavities and free surfaces of the body
- Tightly bound into sheets ‘epithelia’
- Epithelia are barriers to water, solutes, cells
- ECM that underlies epithelia: basal lamina
- Examples
 - Liver (hepatocytes)
 - Skin (e.g. keratinocytes)
 - Gut, Lung
 - Exocrine glands (e.g., mammary, sweat)
Epithelial Cells: Hepatocytes

- **Applications**
 - Drug metabolism studies, toxicity assays
 - Liver regeneration, tissue engineering
 - Liver-specific gene expression and signaling
Epithelial Cells: Hepatocytes

Cryopreserved human hepatocytes, thawed and plated for 4 hours

Surface treatment required for hepatocyte attachment.
Epithelial Cells: Hepatocytes

Primary Rat Hepatocytes

Col I (2D thin coat) Col I (3D gel) BD Matrigel™ Matrix

Hepatocyte morphology and function altered by surface treatment.
EcoPack™ 2-293 Cells (derived from HEK-293)

Integrin α_v expression is affected by the growth surface.
Epithelial Cells: Caco-2

Caco-2 cells, thawed and cultured for 24 hours

TC-treated

BD BioCoat™ Collagen I
Epithelial Cells: Caco-2

Digoxin Permeability Comparison

<table>
<thead>
<tr>
<th>Caco-2 Line</th>
<th>Pore Size</th>
<th>Papp A-B</th>
<th>Papp B-A</th>
<th>Papp Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% FBS</td>
<td>1 uM</td>
<td>mean:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.9</td>
<td>9.7</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD:</td>
<td>0.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%CV:</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(n=4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% FBS</td>
<td>1 uM</td>
<td>mean:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3</td>
<td>17.3</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD:</td>
<td>0.24</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%CV:</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(n=8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial growth conditions affect cell Caco-2 function.
Endothelial Cells

- Line closed internal body cavities (e.g. blood vessels)
- Angiogenesis (e.g., neovascularization during wound healing and tumorigenesis)
 - Formation (sprouting) of capillaries from existing small blood vessels
 - Distinct from vasculogenesis, which is de novo synthesis of vessels from angioblasts (endothelial progenitor cells)
 - Required for tumor growth and survival
- Promote blood cell adhesion during inflammatory response
Endothelial Cells: HUVEC

Human Umbilical Vein Endothelial Cells (HUVEC)

TC-treated

BD BioCoat™ Collagen I
Endothelial Cells: FBHE cells

Fetal Bovine Heart Endothelial (FBHE) Cells

TC-treated

BD BioCoat™ Collagen I
Endothelial Cells: Differentiation

Human Microvascular Endothelial Cells

Collagen I

BD Matrigel™ Matrix
Endothelial Cells: BD BioCoat™ Angiogenesis Systems

- **Endothelial Cell Migration**
 - 24- or 96-Multiwell BD FluoroBlok™ Insert (3 μm pore size)
 - Coated with Human Fibronectin

- **Endothelial Cell Invasion**
 - 24-Multiwell BD FluoroBlok Insert (3 μm pore size)
 - Coated with BD Matrigel™ Matrix

- **Endothelial Cell Tube Formation**
 - Comprised of a BD Falcon™ 96-well black/clear plate coated with BD Matrigel Matrix (non-insert system)

- **BD Human Umbilical Vein Endothelial Cells** (BD™ HUVEC-2)
 - Pre-qualified for VEGF responsiveness and for use with migration assay; also suitable for use with invasion and tube formation assays
Neurons

• Primary Neurons
 – Central nervous system/brain
 – Peripheral neurons (e.g., sensory, motor)

• Neurons
 – Axons conduct and transmit signals
 – Dendrites receive signals
 – Neuronal communication mediated by neurotransmitters (e.g., glutamate, dopamine, serotonin, GABA)
Neurons: Rat Cortical Neurons

Glutamate receptor activity on BD BioCoat™ Laminin/Fibronectin Cultureware.
Neuronal Cells: PC-12

PC-12 (rat pheochromocytoma) cells, 24 hours after seeding, 10% serum

MTS assay

- OD$_{490}$

<table>
<thead>
<tr>
<th>Condition</th>
<th>OD$_{490}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD Falcon™ TC</td>
<td>0.2</td>
</tr>
<tr>
<td>BD BioCoat™ Poly-D-Lysine</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Neurons: PC-12

PC-12 cells, grown on Collagen I

Control

200 ng/ml NGF

Neurite outgrowth after 10-day treatment with NGF.
Visualized with anti-β-tubulin and Hoechst using BD Pathway™ Bioimager.
Human Embryonic Stem Cells

• Generated from the inner cell mass of blastocyst
• Pluripotent cells
• Maintaining pluripotency requires specific culture conditions
 – BD Matrigel™ Matrix
 – BD Laminin/Entactin
Human Embryonic Stem Cells: Surfaces

MEF-CM

mTeSR™ 1

BD™ Laminin/Entactin Complex High Concentration

BD Matrigel™ hESC-qualified Matrix
Human Embryonic Stem Cells: Surfaces

Pluripotency marker, OCT-4, expression in H9 cells.
Summary

• Cell / surface interactions are very complex
• Currently, our main approach is empirical
• Ultimate goal – predict the surface properties needed for certain cell types and culture conditions
Contact Us

Technical Support

In the US

e-mail: labware@bd.com

tel: 877.232.8995

Outside the US

e-mail: help.biosciences@bd.com

Contact your local distributor or nearest BD Biosciences office

Visit www.bdbiosciences.com